Project description:Collier, the single Drosophila COE (Collier/EBF/Olf-1) transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col) targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya) is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles. Fixed nuclear extract of stage 13-14 whole drosophila embryo were submit to Chromatine Immunoprecipitation with a mix of three COL monoclonal antibodies. As control a non relevent antibody (anti-HA) was used. Precipitated DNA was submit to Illumina high-throughput sequencing.
Project description:SAGA is a highly conserved transcriptional co-activator complex involved in multiple steps of transcription with activities that function both pre and post initiation. Loss of individual subunits results in developmental defects, suggesting a role in development. To better understand the roles of SAGA functions in developmental gene expression and it's relationship with RNA polymerase II, we examined its composition, binding profile, and the effects of subunit loss on gene expression in two distinct cell types in late stage Drosophila embryos: muscle and neurons. Chromatin IP of FLAG-tagged SAGA subunit Ada2b, and RNA polymerase II (antibody 4H8), was performed in neuronal (elav+) or muscle (mef2+) cells isolated by FACS from late stage embryos, and compared to whole cell extracts (input). The control constists of an IP performed in neuronal cells from a non-tagged strain.
Project description:To fully understand cell type identity and function in the nervous system there is a need to understand neuronal gene expression at the level of isoform diversity. Here we applied Next Generation Sequencing of the transcriptome (RNA-Seq) to purified sensory neurons and cerebellar granular neurons (CGNs) grown on an axonal growth permissive substrate. The goal of the analysis was to uncover neuronal type specific isoforms as a prelude to understanding patterns of gene expression underlying their intrinsic growth abilities. Global gene expression patterns were comparable to those found for other cell types, in that a vast majority of genes were expressed at low abundance. Nearly 18% of gene loci produced more than one transcript. More than 8000 isoforms were differentially expressed, either to different degrees in different neuronal types or uniquely expressed in one or the other. Sensory neurons expressed a larger number of genes and gene isoforms than did CGNs. To begin to understand the mechanisms responsible for the differential gene/isoform expression we identified transcription factor binding sites present specifically in the upstream genomic sequences of differentially expressed isoforms, and analyzed the 3’ untranslated regions (3’ UTRs) for microRNA (miRNA) target sites. Our analysis defines isoform diversity for two neuronal types with diverse axon growth capabilities and begins to illuminate the complex transcriptional landscape in two neuronal populations. RNA was sequenced from cultured peripheral neurons of the dorsal root ganglia (DRG neurons) and cerebellar granular neurons (CGNs) of the central nervous system
Project description:Collier, the single Drosophila COE (Collier/EBF/Olf-1) transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col) targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya) is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.
Project description:Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type-specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein, Shep, as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but not other tissues. Consistent with negative regulatory activity, ChIP-seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. ChIP-seq of Shep, Su(Hw), and Mod(mdg4)2.2 in Drosophila BG3 cells along with alternate antibodies
Project description:ChIP-seq study analysing adult Drosophila melanogaster head, glial, neuronal and fat body, as well as embryonic RNA pol II and H2A.v binding by employing the GAL4-UAS system to generate GFP-fusion proteins and ChIP-seq
Project description:We used immunostaining and FACS to enrich for distinct neural cell types at multiple stages of Drosophila neurogenesis for RNA-Seq In Drosophila melanogaster, cell-type specification during early nervous system development requires precise regulation of gene expression in time and space. To investigate the gene regulation patterns in early neuronal development, we developed a method 'DIV-SortSeq' to enrich for specific neuroglial cell types for RNA sequencing: from early columnar subdivision and specification, through neuroglial differentiation. DIV-SortSeq recapitulates many of the known protein-coding transcriptome dynamics, as well as novel transcriptional regulatory patterns. We also performed nuclear-cytoplasmic fractionation of whole embryos - Fractionation-Seq - to assess temporal changes in subcellular localization of transcripts during embryogenesis. We present these data as a resource to permit further in-depth investigation into the functional roles of the coding and noncoding transcriptome during early Drosophila neurogenesis.
Project description:The central complex (CX) plays a key role in many higher order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain detailed mechanistic understanding of how these functions are executed. We have generated and characterized a large collection of split-GAL4 driver lines that express in individual or small subsets of cell types in the Drosophila CX. We survey neuropeptide expression in the central brain using fluorescent in situ hybridization and show that several CX cell types express multiple neuropeptides. We use our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well characterized genetic tools and information on neuropeptide expression we provide should enhance studies of the CX.
Project description:<p>Elucidating the cellular architecture of the human neocortex is central to understanding our cognitive abilities and susceptibility to disease. In this study, we applied single nucleus RNA sequencing to perform a comprehensive analysis of cell types in the middle temporal gyrus of human cerebral cortex. We identify a highly diverse set of excitatory and inhibitory neuronal types, many of which are relatively sparse. Additionally, we found that excitatory types are less layer-restricted than expected based prior knowledge from cell morphologies and from mouse studies. Comparison to a similar mouse cortex single cell RNA-sequencing dataset revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of human cell type properties. Despite this general conservation, we also find extensive differences between homologous cell types in human and mouse, including dramatic alterations in proportions, laminar distributions, gene expression, and morphology. These species-specific features emphasize the importance of directly studying human brain.</p> <p>This study conducted by the Allen Institute for Brain Science was supported by the Allen Institute for Brain Science and by US National Institutes of Health grant U01 MH114812-02 to E.S.L. Collaborators request that publications resulting from these data cite their original publication: Hodge RD, Bakken TE, et al. Conserved cell types with divergent features between human and mouse cortex. bioRxiv. 2018 doi: <a href="https://www.biorxiv.org/content/10.1101/384826v1" target="_blank">10.1101/384826</a>.</p>
Project description:How a neuronal cell type is defined and how this relates to its transcriptome are still open questions. The Drosophila olfactory projection neurons (PNs) are among the bestcharacterized neuronal types: Different PN classes target dendrites to distinct olfactory glomeruli and PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA-sequencing, we comprehensively characterized the transcriptomes of 40 PN classes and unequivocally identified transcriptomes for 6 classes. We found a new lineage-specific transcription factor that instructs PN dendrite targeting. Transcriptomes of closely-related PN classes exhibit the largest difference during circuit assembly, but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Genes encoding transcription factors and cell-surface molecules are the most differentially expressed, indicating their central roles in specifying neuronal identity. Finally, we show that PNs use highly redundant combinatorial molecular codes to distinguish subtypes, enabling robust specification of cell identity and circuit assembly.