Cell-type-specific genetic tools for the Drosophila central complex and their use to investigate neuropeptide expression and sleep regulation.
Ontology highlight
ABSTRACT: The central complex (CX) plays a key role in many higher order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain detailed mechanistic understanding of how these functions are executed. We have generated and characterized a large collection of split-GAL4 driver lines that express in individual or small subsets of cell types in the Drosophila CX. We survey neuropeptide expression in the central brain using fluorescent in situ hybridization and show that several CX cell types express multiple neuropeptides. We use our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well characterized genetic tools and information on neuropeptide expression we provide should enhance studies of the CX.
Project description:In both invertebrates such as Drosophila and vertebrates such as mouse or human, the brain contains the most diverse population of cell types of any tissue. It is generally accepted that transcriptional diversity is an early step in generating neuronal and glial diversity, followed by the establishment of a unique gene expression profile that determines morphology, connectivity, and function. In Drosophila, there are two types of neural stem cells, called Type 1 (T1) and Type 2 (T2) neuroblasts. In contrast to T1 neuroblasts, T2 neuroblasts generate intermediate neural progenitors (INPs) that expand the number and diversity of cell types. The diversity of T2-derived neurons contributes a large portion of the central complex (CX), a conserved brain region that plays a role in sensorimotor integration. Recent work has revealed much of the connectome of the CX, but how this connectome is assembled remains unclear. Mapping the transcriptional diversity of neurons derived from T2 neuroblasts is a necessary step in linking transcriptional profile to the assembly of the adult brain. Here we perform single nuclei RNA sequencing of T2 neuroblast-derived adult neurons and glia. We identify clusters containing all known classes of glia, clusters that are male/female enriched, and 161 neuron-specific clusters. We map neurotransmitter and neuropeptide expression and identify unique transcription factor combinatorial codes for each cluster (presumptive neuron subtype). This is a necessary step that directs functional studies to determine whether each transcription factor combinatorial code specifies a distinct neuron type within the CX. We map several columnar neuron subtypes to distinct clusters and identify two neuronal classes (NPF+ and AstA+) that both map to two closely related clusters. Our data support the hypothesis that each transcriptional cluster represents one or a few closely related neuron subtypes.
Project description:Neural communication requires both fast-acting neurotransmitters and neuromodulators that function on slower timescales to communicate. Endogenous bioactive peptides, often called “neuropeptides,” comprise the largest and most diverse class of neuromodulators that mediate crosstalk between the brain and peripheral tissues to regulate physiology and behaviors conserved across the animal kingdom. Neuropeptide signaling can be terminated through receptor binding and internalization or degradation by extracellular enzymes called neuropeptidases. Inactivation by neuropeptidases can shape the dynamics of signaling in vivo by specifying both the duration of signaling and the anatomic path neuropeptides can travel before they are degraded. For most neuropeptides, the identity of the relevant inactivating peptidase(s) is unknown. Here, we established a screening platform in C. elegans utilizing mass spectrometry-based peptidomics to discover neuropeptidases and simultaneously profile the in vivo specificity of these enzymes against each of more than 250 endogenous peptides. We identified NEP-2, a worm ortholog of the mammalian peptidase neprilysin-2, and demonstrated that it regulates specific neuropeptides, including those in the egg-laying circuit. We found that NEP-2 is required in muscle cells to regulate signals from neurons to modulate both behavior and health in the reproductive system. Taken together, our results demonstrate that peptidases, which are an important node of regulation in neuropeptide signaling, affect the dynamics of signaling to impact behavior, physiology, and aging.
Project description:<p><b>BRAINCODE: How Does the Human Genome Function in Specific Brain Neurons?</b> The human brain comprises about 86 billion neurons whose function is central to human biology. How does the human genome program high performing neurons and neural networks in response to experience? What subprograms does the genome express in physiologically and morphologically distinct brain cells? The goal of the BRAIN Cell encyclOpeDia of transcribed Elements Consortium (BRAINcode) is to provide a map of gene expression - both protein-coding and non-coding - in specific cell types, not in culture, but in situ in brains of people. Going beyond traditional mRNA sequencing, polyadenylated and non-polyadenylated transcripts were ultra deeply sequenced using ribo-depleted RNA from neurons laser-captured from human post-mortem brains. Three prototypical neuron types, dopamine neurons, pyramidal neurons, and Betz cells, were prioritized because of their key biologic roles and differential vulnerability to important neurodegenerative diseases such as Parkinson's or Alzheimer's disease. Genetic variation between individuals was examined for correlation with differences in transcribed sequences to identify regions of the genome that influence whether, how, and how much a transcript is expressed in specific cell types in human brains. Our results indicate a vast universe of annotated and novel non-coding RNAs expressed in brain cells and suggest a more diverse and much more complex transcriptional architecture than previously imagined. </p>
Project description:One of the key aspects of neuronal differentiation is the array of neurotransmitters and neurotransmitter receptors that each neuron possesses. One important goal of developmental neuroscience is to understand how these differentiated properties are established during development. In this paper, we use fluorescence activated cell sorting and RNA-seq to determine the transcriptome of the Drosophila CNS midline cells, which consist of a small number of well-characterized neurons and glia. These data revealed that midline cells express 9 neuropeptide precursor genes, 13 neuropeptide receptor genes, and 31 small-molecule neurotransmitter receptor genes. In situ hybridization and high-resolution confocal analyses were carried-out to determine the midline cell identity for these neuropeptides and the neuropeptide receptors. The results revealed a surprising level of diversity. Neuropeptide genes are expressed in a variety of midline cell types, including motoneurons, GABAergic interneurons, and midline glia. These data revealed previously unknown functional differences among the highly-related iVUM neurons. There also exist segmental differences in expression for the same neuronal sub-type. Similar experiments on midline-expressed neuropeptide receptor genes reveal considerable diversity in synaptic inputs. Multiple receptor types were expressed in midline interneurons and motoneurons, and, in one case, link feeding behavior to gut peristalsis and locomotion. There were also segmental differences, variations between the 3 iVUMs, and three hormone receptor genes were broadly expressed in most midline cells. The Drosophila Castor transcription factor is present at high levels in iVUM5, which is both GABAergic and expresses the short neuropeptide F precursor gene. Genetic and misexpression experiments indicated that castor specifically controls expression of the short neuropeptide F precursor gene, but does not affect iVUM cell fate or expression of Gad1. This indicates a novel function for castor in regulating neuropeptide gene expression. To study the development and differentiation of the CNS midline cells of Drosophila melanogaster on a genome-wide scale, these cells were labeled with GFP using the GAL/UAS system and FACS purified at 2 ermbryonic time-points; 6-8 hours and 14-16 hours after egg laying. Poly(A) mRNA was collected from these samples and cDNA libraries were generated. Sequencing was performed on 6 independent samples: Two FACS purified CNS-midline cell samples and one non-midline sample taken from 6-8 hours After Egg Laying (AEL) embryos and from 14-16 hours AEL embryos.
Project description:One of the key aspects of neuronal differentiation is the array of neurotransmitters and neurotransmitter receptors that each neuron possesses. One important goal of developmental neuroscience is to understand how these differentiated properties are established during development. In this paper, we use fluorescence activated cell sorting and RNA-seq to determine the transcriptome of the Drosophila CNS midline cells, which consist of a small number of well-characterized neurons and glia. These data revealed that midline cells express 9 neuropeptide precursor genes, 13 neuropeptide receptor genes, and 31 small-molecule neurotransmitter receptor genes. In situ hybridization and high-resolution confocal analyses were carried-out to determine the midline cell identity for these neuropeptides and the neuropeptide receptors. The results revealed a surprising level of diversity. Neuropeptide genes are expressed in a variety of midline cell types, including motoneurons, GABAergic interneurons, and midline glia. These data revealed previously unknown functional differences among the highly-related iVUM neurons. There also exist segmental differences in expression for the same neuronal sub-type. Similar experiments on midline-expressed neuropeptide receptor genes reveal considerable diversity in synaptic inputs. Multiple receptor types were expressed in midline interneurons and motoneurons, and, in one case, link feeding behavior to gut peristalsis and locomotion. There were also segmental differences, variations between the 3 iVUMs, and three hormone receptor genes were broadly expressed in most midline cells. The Drosophila Castor transcription factor is present at high levels in iVUM5, which is both GABAergic and expresses the short neuropeptide F precursor gene. Genetic and misexpression experiments indicated that castor specifically controls expression of the short neuropeptide F precursor gene, but does not affect iVUM cell fate or expression of Gad1. This indicates a novel function for castor in regulating neuropeptide gene expression.
Project description:<p>Defining the number, proportion, or lineage of distinct cell types in the developing human brain is an important goal of modern brain research. We produced single cell transcriptomic profiles for 40,000 cells at mid-gestation to define deep expression profiles corresponding to all known major cell types at this developmental period and compare this with bulk tissue profiles. We identified multiple transcription factors (TFs) and co-factors expressed in specific cell types, including multiple new cell-type-specific relationships, providing an unprecedented resource for understanding human neocortical development and evolution. This includes the first single-cell characterization of human subplate neurons and subtypes of developing glutamatergic and GABAergic neurons. We also used these data to deconvolute single cell regulatory networks that connect regulatory elements and transcriptional drivers to single cell gene expression programs in the developing CNS. We characterized major developmental trajectories that tie cell cycle progression with early cell fate decisions during early neurogenesis. Remarkably, we found that differentiation occurs on a transcriptomic continuum, so that differentiating cells not only express the few key TFs that drive cell fates, but express broad, mixed cell-type transcriptomes prior to telophase. Finally, we mapped neuropsychiatric disease genes to specific cell types, implicating dysregulation of specific cell types in ASD, ID, and epilepsy, as the mechanistic underpinnings of several neurodevelopmental disorders. Together these results provide an extensive catalog of cell types in human neocortex and extend our understanding of early cortical development, human brain evolution and the cellular basis of neuropsychiatric disease.</p>
Project description:Bidirectional communication between tumors and neurons has emerged as a key facet of the tumor microenvironment that drives malignancy. Another hallmark feature of cancer is epigenomic dysregulation, where alterations in gene expression influences cell states and interactions with the tumor microenvironment. Using the pediatric brain tumor ependymoma (EPN) as a model, we found that inhibition of histone serotonylation blocks EPN tumorigenesis and regulates expression of a core set of developmental transcription factors (TFs). High-throughput, in vivo screening of these TFs revealed that ETV5 promotes EPN tumorigenesis and functions by enhancing repressive chromatin states. Neuropeptide Y (NPY) is amongst the genes repressed by ETV5 and its overexpression suppresses EPN tumor progression and tumor-associated network hyperactivity via synaptic remodeling. Collectively, these studies identify histone serotonylation as a key driver of EPN tumorigenesis, while further revealing how neuronal signaling, neuro-epigenomics, and developmental programs are intertwined to drive malignancy in brain cancer.
Project description:The Drosophila brain contains tens of thousands of distinct cell types. Numerous different transgenic lines reproducibly target specific neuron subsets, yet most still express in several distinct cell types. Furthermore, most lines were developed without a priori knowledge of where the transgenes would be expressed. To aid in the development of cell type-specific tools for neuronal identification and manipulation, we used an iterative assay for transposase-accessible chromatin by sequencing (ATAC-seq) approach. Open chromatin regions (OCRs) that were enriched in neurons compared to whole bodies drove transgene expression preferentially in subsets of neurons. A second round of ATAC-seq from these specific neuron subsets revealed additional enriched OCRs that further restricted transgene expression within the chosen neuron subset. This approach allows for continued refinement of transgene expression and can be used to identify neurons relevant for sleep behavior. Furthermore, this approach is widely applicable to other cell types and to other organisms.
Project description:We report RNA sequencing of single Agrp neurons isolated from the arcuate nucleus of the hypothalamus. Analyses of Agrp neuron transcriptomes reveals differential expression of receptors for multiple neuromodulators. Neuroanatomical mapping of known ligands of the receptors define subsets of neurons directly upstream of AgRP neurons in specific brain areas.
2023-03-27 | GSE227909 | GEO
Project description:RNA-Seq of Drosophila Central Complex neuronal cell types