Project description:Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme catalyzing the conversion of saturated fatty acids palmitate and stearate to monounsaturated fatty acids palmitoleate and oleate. During adipocyte differentiation, SCD expression increases concomitantly with several transcription factors and lipogenic genes. We used microarrays to examine gene expression in differentiated pre-adipocytes treated with and without an SCD inhibitor.
Project description:Elovl6 is a member of mammalian fatty acid elongase that is responsible for converting C16 saturated and monounsaturated fatty acids into C18 species. To understand the role of Elovl6 in liver, we generated liver-specific Elovl6 knockout mice (Albumin-Cre;Elovl6 fl/fl C57BL/6J). The goal of this experiment was to determine effects of hepatocyte Elovl6 deficiency on the murine liver transcriptome under lipogenic condition.
Project description:Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme catalyzing the conversion of saturated fatty acids palmitate and stearate to monounsaturated fatty acids palmitoleate and oleate. During adipocyte differentiation, SCD expression increases concomitantly with several transcription factors and lipogenic genes. We used microarrays to examine gene expression in differentiated pre-adipocytes treated with and without an SCD inhibitor. On day 7 of adipocyte differentiation, total RNA was extracted from adipocytes. Two conditions were selected for comparison: total RNA extracted from adipocytes treated with DMSO (control) and or a SCD inhibitor.
Project description:De novo lipogenesis is activated in most cancers. Several lipogenic enzymes are implicated in oncogenesis and represent potential cancer therapeutic targets. RNA interference-mediated depletion of ATP citrate lyase (ACLY), the enzyme that catalyzes the first step of de novo lipogenesis, leads to growth suppression in a subset of human cancer cells. Here we demonstrate the molecular basis and potential biomarkers for ACLY-targeting therapy. First, suppression of cancer cell growth by ACLY depletion involves down-regulation of fatty acid elongase ELOVL6 at the transcriptional level. Lipid profiling revealed that ACLY depletion alters fatty acid composition in triglyceride; increased palmitate and decreased longer fatty acids, in accordance with ELOVL6 down-regulation. Second, ACLY depletion increases reactive oxygen species (ROS), whereas addition of antioxidant reduces ROS and attenuates the growth suppression. Third, ACLY depletion or ROS stimulation induce phosphorylation of AMP-activated protein kinase (AMPK), a sensor of energy and lipid metabolism. Analysis of various cancer cell lines revealed that the levels of AMPK phosphorylation (p-AMPK) correlate with the basal ROS levels, and that cancer cells with low basal p-AMPK (i.e., low basal ROS) levels are highly susceptible to ACLY depletion-mediated growth suppression. Finally, in clinical colon cancer tissues, p-AMPK levels are significantly decreased in aggressive tumors and correlate with the levels of 8-hydroxydeoxyguanosine, a hallmark of ROS stimulation. Together, these data suggest that ACLY inhibition suppresses cancer growth via palmitate-mediated lipotoxicity, and p-AMPK could be a predictive biomarker for its therapeutic outcome. Two cell lines are treated with ACLY siRNA. The samples include controls of each cell line.
Project description:Due to the high energy demands and characteristic morphology, retinal photoreceptor cells require the specialized lipid metabolism for survival and functions. In this study, we focus on the roles of saturated fatty acids and their metabolism in these processes. Frame-shift mutation of lysophosphatidylcholine acyltransferase 1 (Lpcat1), which introduces saturated fatty acid into lysophosphatidylcholine to produce disaturated phosphatidylcholine (PC), has been reported as a causative for spontaneous retinal degeneration in mice (rd11 mice). However, the molecular basis of retinal degeneration caused by Lpcat1 mutation remains unclear. Here, we report that Lpcat1 deficiency induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 affects not only disaturated PC production, but also the proper cellular fatty acid flux presumably through altering saturated fatty acyl-CoA availabilities. Furthermore, we demonstrated that Lpcat1 deletion increased mitochondrial reactive oxygen species (ROS) levels in photoreceptor cells, but not in other retinal cells, without affecting the OS structure and trafficking of OS localized proteins. These results suggested that LPCAT1-dependent production of disaturated PC is critical for metabolic adaptation during photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration-related retinal diseases.
Project description:Metabolic remodeling is one of the earliest events that occur during the early differentiation of embryonic stem cells (ESCs), but how these metabolic changes are regulated and participate in the cell differentiation is still largely undissected. Here, we define the fatty acid metabolism as a key player in definitive endoderm (DE) differentiation from human ESCs. During DE differentiation, lipogenesis is decreased while fatty acid β oxidation is enhanced. This dynamic is due to the phosphorylation of lipogenic enzyme acetyl-CoA carboxylase (ACC), which is mediated by AMP-activated protein kinase (AMPK) and inhibits the de novo fatty acid synthesis. More importantly, inhibition of fatty acid synthesis by either its inhibitors or AMPK agonist, significantly promotes the human endoderm differentiation, while blockade of the fatty acid oxidation by genetic manipulation or chemical antagonists impairs the differentiation. The de novo fatty acid synthesis inhibition and fatty acid β oxidation maintaining contribute to the accumulation of cellular acetyl-CoA, which is the essential substrate for protein acetylation. Further study reveals that SMAD3 acetylation and the subsequent subcellular localization exhibit significant change upon interfering fatty acid metabolism. Mechanistically, the accumulation of cellular acetyl-CoA guarantees the acetylation of key transcription factor SMAD3, which further causes the nuclear localization and activation of SMAD signaling pathway to promote DE differentiation. Thus, our current study reveals a fatty acid synthesis/oxidation shift during early differentiation and presents an instructive role of fatty acid metabolism in regulating human early endoderm differentiation.
Project description:Metabolic remodeling is one of the earliest events that occur during the early differentiation of embryonic stem cells (ESCs), but how these metabolic changes are regulated and participate in the cell differentiation is still largely undissected. Here, we define the fatty acid metabolism as a key player in definitive endoderm (DE) differentiation from human ESCs. During DE differentiation, lipogenesis is decreased while fatty acid β oxidation is enhanced. This dynamic is due to the phosphorylation of lipogenic enzyme acetyl-CoA carboxylase (ACC), which is mediated by AMP-activated protein kinase (AMPK) and inhibits the de novo fatty acid synthesis. More importantly, inhibition of fatty acid synthesis by either its inhibitors or AMPK agonist, significantly promotes the human endoderm differentiation, while blockade of the fatty acid oxidation by genetic manipulation or chemical antagonists impairs the differentiation. The de novo fatty acid synthesis inhibition and fatty acid β oxidation maintaining contribute to the accumulation of cellular acetyl-CoA, which is the essential substrate for protein acetylation. Further study reveals that SMAD3 acetylation and the subsequent subcellular localization exhibit significant change upon interfering fatty acid metabolism. Mechanistically, the accumulation of cellular acetyl-CoA guarantees the acetylation of key transcription factor SMAD3, which further causes the nuclear localization and activation of SMAD signaling pathway to promote DE differentiation. Thus, our current study reveals a fatty acid synthesis/oxidation shift during early differentiation and presents an instructive role of fatty acid metabolism in regulating human early endoderm differentiation.
Project description:Mammalian fatty acid synthase (FASN) is a lipogenic enzyme that catalyzes the formation of the long chain saturated fatty acid palmitate from acetyl and malonyl CoA in the presence of NADPH. Mammalian cells acquire fatty acids through dietary sources or through FASN. Although most mammalian cells express FASN at low levels, it is upregulated in cancers and during replication of many viruses. The precise role of FASN in disease pathogenesis is poorly understood, and whether de novo fatty acid synthesis contributes to host or viral protein acylation has been traditionally difficult to study. We describe a cell permeable, click-chemistry compatible alkynyl-acetate analog (5-Hexynoic acid, or "Alk-4") that functions as a reporter of FASN-dependent protein acylation. Alk-4 metabolic labeling enabled biotin-based purification and identification of more than 200 FASN-dependent acylated cellular proteins. Alk-4 also labeled the palmitoylated host protein IFITM3 (Interferon inducible transmembrane protein-3), a restriction factor for Influenza, and the myristoylated HIV-1 MA (Matrix) protein. Thus, Alk-4 is a useful bioorthogonal tool to selectively probe FASN-mediated protein acylation in normal and diseased states.
Project description:Due to the high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. This study focused on the roles of saturated fatty acids and their metabolism. A frameshift mutation of lysophosphatidylcholine acyltransferase 1 (Lpcat1), introducing saturated fatty acids into lysophosphatidylcholine to produce disaturated phosphatidylcholine (PC), has been reported to cause spontaneous retinal degeneration in mice (rd11 mice). In this study, we performed a detailed characterization of Lpcat1 in the retina and found that Lpcat1 deficiency induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 affects disaturated PC production and the proper cellular fatty acid flux, presumably by altering saturated fatty acyl-CoA availabilities. Furthermore, we demonstrated that Lpcat1 deletion increased mitochondrial reactive oxygen species (ROS) levels in photoreceptor cells, but not in other retinal cells without affecting the OS structure and trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of disaturated PC is critical for metabolic adaptation during photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration-related retinal diseases.
Project description:De novo lipogenesis is activated in most cancers. Several lipogenic enzymes are implicated in oncogenesis and represent potential cancer therapeutic targets. RNA interference-mediated depletion of ATP citrate lyase (ACLY), the enzyme that catalyzes the first step of de novo lipogenesis, leads to growth suppression in a subset of human cancer cells. Here we demonstrate the molecular basis and potential biomarkers for ACLY-targeting therapy. First, suppression of cancer cell growth by ACLY depletion involves down-regulation of fatty acid elongase ELOVL6 at the transcriptional level. Lipid profiling revealed that ACLY depletion alters fatty acid composition in triglyceride; increased palmitate and decreased longer fatty acids, in accordance with ELOVL6 down-regulation. Second, ACLY depletion increases reactive oxygen species (ROS), whereas addition of antioxidant reduces ROS and attenuates the growth suppression. Third, ACLY depletion or ROS stimulation induce phosphorylation of AMP-activated protein kinase (AMPK), a sensor of energy and lipid metabolism. Analysis of various cancer cell lines revealed that the levels of AMPK phosphorylation (p-AMPK) correlate with the basal ROS levels, and that cancer cells with low basal p-AMPK (i.e., low basal ROS) levels are highly susceptible to ACLY depletion-mediated growth suppression. Finally, in clinical colon cancer tissues, p-AMPK levels are significantly decreased in aggressive tumors and correlate with the levels of 8-hydroxydeoxyguanosine, a hallmark of ROS stimulation. Together, these data suggest that ACLY inhibition suppresses cancer growth via palmitate-mediated lipotoxicity, and p-AMPK could be a predictive biomarker for its therapeutic outcome.