Project description:In this work we took 9 samples from brain and 6 samples from muscle of the African turquoise killifish (Nothobranchius furzeri) at 3.5, 8.5 and 14 weeks. Total RNA was sequenced and circRNAs were detected.
Project description:Suspended animation (e.g. hibernation, diapause) allows organisms to survive extreme environments. But the mechanisms underlying the evolution of suspended animation states are unknown. The African turquoise killifish has evolved diapause as a form of suspended development to survive the complete drought that occurs every summer. Here, we show that gene duplicates – paralogs – exhibit specialized expression in diapause compared to normal development in the African turquoise killifish. Surprisingly, paralogs with specialized expression in diapause are evolutionarily very ancient and are present even in vertebrates that do not exhibit diapause. To determine if evolution of diapause is due to the regulatory landscape rewiring at ancient paralogs, we assessed chromatin accessibility genome-wide in fish species with or without diapause. This analysis revealed an evolutionary recent increase in chromatin accessibility at very ancient paralogs in African turquoise killifish. The increase in chromatin accessibility is linked to the presence of new binding sites for transcription factors, likely due to de novo mutations and transposable element (TE) insertion. Interestingly, accessible chromatin regions in diapause are enriched for lipid metabolism genes, and our lipidomics studies uncover a striking difference in lipid species in African turquoise killifish diapause, which could be critical for long-term survival. Together, our results show that diapause likely originated by repurposing pre-existing gene programs via recent changes in the regulatory landscape. This work raises the possibility that suspended animation programs could be reactivated in other species for long-term preservation via transcription factor remodeling and suggests a mechanism for how complex adaptations evolve in nature.
2021-08-05 | ST001898 | MetabolomicsWorkbench
Project description:Single cell RNA-seq of male and female African turquoise killifish tissues
Project description:Protein aggregation is a hallmark of age-related neurodegeneration. Yet whether aggregation drives age-related dysfunction and disease in other tissues is poorly understood. Here, we leverage the African turquoise killifish to obtain a systematic understanding of protein aggregation in seven tissues in an aging vertebrate.
Project description:With advancing age, senescent cells accumulate as they are not efficiently cleared by the immune system anymore. Via a senescence-associated secretory phenotype, chronic senescent cells alter the microenvironment, creating an unfavorable milieu for neurogenesis and neurorepair. Using an innovative and rapid aging model, the African turquoise killifish, we have previously demonstrated a dramatic decline in neurogenic potential of non-glial progenitors with age. Even after traumatic brain injury, progenitor proliferation and neuron production was very low in aged killifish in comparison to young adult killifish, and overall neurorepair was incomplete. In the present study, we validated if the senolytic cocktail dasatinib and quercetin (D+Q) could reboot the neurogenic output by clearing chronic senescent cells from the aged killifish brain to re-create the necessary supportive environment. Our results confirm that the aged killifish telencephalon holds a very high senescent cell burden, which we could diminish by short-term systemic D+Q treatment. As a consequence of D+Q administration, proliferation of non-glial progenitors increased and more new neurons were generated and migrated into the parenchyma after injury. Injury-induced inflammation and glial scarring, a phenomenon only seen in aged killifish, remained unaltered. Senolytic treatment with D+Q might thus hold promise for improving brain function in aged populations, and is especially interesting for reviving the neurogenic potential of an already aged central nervous system.
2023-07-20 | PXD036437 | Pride
Project description:Transcriptional profiling of aging tissues from African turquoise killifish
| PRJNA952180 | ENA
Project description:Bulk ATAC-seq of aging African turquoise killifish brain
Project description:The mammalian central nervous system (CNS) and its retina are susceptible to age-related patholgoies, resulting in progressive, irreversible diseases like glaucoma and age-related macular degeneration (AMD), which are increasingly prevalent with rising life expectancy. Currently, there are no targeted long-term therapies to prevent vision loss. The short lived African turquoise killifsh (Nothobranchius furzeri, GRZ-AD) is a valuable genetic model for ageing studies, displaying rapid ageing phenotypes within its four to six-month lifespan. Our investigation on the molecular consequences of ageing in the retina, employing scRNA-sequencing, shows a a comprehensive overview of the cellular heterogeneity of the killifish retina, uncovering age-related gene expression changes specific to certain retinal cell populations.
Project description:The mammalian central nervous system (CNS) is susceptible to age-related pathologies, resulting in progressive, irreversible disease. Neurodegenerative eye conditions, like glaucoma and age-related macular degeneneration (AMD), are on the rise due to increased life expectancy. Despite this, there are currently no long-term therapies to prevent degeneration and vision loss. The short-lived African turquoise kililfsh (Nothobranchius furzeri GRZ-AD) is an ideal genetic model for ageing studies, exhibiting rapid ageing phenotypes within its four to six-mont lifespan. Investigating the molecular consequences of ageing in the retina, we conducted bulk RNA-sequencing, revealing dysregulation of genetic pathways associated with ageing CNS and retinal diseas in the aged killifish retina.