Project description:Non-alcoholic fatty liver disease (NAFLD) influence one of third population around the world. Until now, no effective treatments have been established due to the improper in vitro assays and experimental animal models. By co-culturing human gut and liver cell lines (CaCO2 and HepG2 cells, respectively) interconnected via the microfluidic closed medium circulation loop, we created a gut-liver-on-a-chip (iGLC) platform as an in vitro human model of the gut-liver axis (GLA) in initiation and progression of NAFLD.
Project description:Non-alcoholic fatty liver disease (NAFLD) influence one of third population around the world. Until now, no effective treatments have been established due to the improper in vitro assays and experimental animal models. By co-culturing human gut and liver cell lines (CaCO2 and HepG2 cells, respectively) interconnected via the microfluidic closed medium circulation loop, we created a gut-liver-on-a-chip (iGLC) platform as an in vitro human model of the gut-liver axis (GLA) in initiation and progression of NAFLD.
Project description:Background & Aims: Non-alcoholic fatty liver disease (NALFLD)-associated changes in gut microbiota are important drivers of disease progression toward fibrosis. Therefore, reversing microbiota alterations could ameliorate NAFLD progression. Oat beta-glucan, a non-digestible polysaccharides, has shown promising therapeutic effects on hyperlipidemia associated with NAFLD, but its impact on gut microbiota and most importantly NAFLD fibrosis remains unknown. Methods: We performed detailed metabolic phenotyping including body composition, glucose tolerance, and lipid metabolism as well as comprehensive characterization of the gut-liver axis in a western-style diet (WSD)-induced model of NAFLD and assessed the effect of a beta-glucan intervention on early and advanced liver disease. Gut microbiota was modulated using broad-spectrum antibiotic (Abx) treatment. Results: Oat beta-glucan supplementation did not affect WSD-induced body weight gain, glucose intolerance, and the metabolic phenotype remained largely unaffected. Interestingly, oat beta-glucan dampened NAFLD inflammation, associated with significantly reduced monocyte-derived macrophages (MoMFs) infiltration, fibroinflammatory gene expression, and strongly reduced fibrosis development. Mechanistically, this protective effect was not mediated by changes in bile acid composition or signaling, but was dependent on gut microbiota and was lost upon Abx treatment. Specifically, oat beta-glucan partially reversed unfavorable changes in gut microbiota, resulting in an expansion of protective taxa, including Ruminococcus, and Lactobacillus followed by reduced translocation of TLR ligands. Conclusions: Our findings identify oat beta-glucan as a highly efficacious food supplement that dampens inflammation and fibrosis development in diet-induced NAFLD. These results, along with its favorable dietary profile, suggest that it may be a cost-effective and well-tolerated approach to preventing NAFLD progression and should be assessed in clinical studies.
Project description:FLORINASH - The role of intestinal microflora in non-alcoholic fatty liver disease (NAFLD) EU FP7-HEALTH, project number 241913<br>Florinash examined the role on the gut microbiota in NAFLD. Metagenomic, proteomic, metabolomic and transcriptomic data were integrated to give provide a systems biology approach to disease-associated studies. Liver biopsies were obtained from patients undergoing bariatric surgery; one was used to diagnose NAFLD, the other was used to examine the host transcriptome in NAFLD. This dataset is part of the TransQST collection.
Project description:Purpose: While various functions of peripheral serotonin are known, the direct role of serotonin in regulating hepatic lipid metabolism in vivo is not well understood. We studied whether serotonin directly acts on liver to regulate lipid metabolism. Methods: Methods: 12 weeks aged liver-specific Htr2a KO (Albumin-Cre+/-; Htr2aflox/flox, herein named Htr2a LKO) mice and wildtype (WT) littermates were fed a high-fat diet (HFD, 60% fat calories) for 8 weeks. Results: Hepatic lipid droplet accumulation, NAFLD activity score, and hepatic triglyceride levels were dramatically reduced in HFD-fed Htr2a LKO mice compared to WT littermates. Conclusions: Gut-derived serotonin is a direct regulator of hepatic lipid metabolism via a gut TPH1-liver HTR2A endocrine axis. And shows promise as a novel drug target to ameliorate NAFLD with minimal systemic metabolic effects.
Project description:High-calorie diets lead hepatic steatosis and to the development of non-alcoholic fatty liver disease (NAFLD), which can evolve over many years into the inflammatory form non-alcoholic steatohepatits (NASH) posing a risk for the development of hepatocellular carcinoma (HCC). Due to the diet and the liver alteration, the axis between liver and gut is disturbed, resulting in gut microbiome alterations. Consequently, detecting these gut microbiome alterations repre-sents a promising strategy for early NASH and HCC detection. We analyzed medical parame-ters and the fecal metaproteome of 19 healthy controls, 32 NASH, and 29 HCC patients target-ing the discovery of diagnostic biomarkers. Here, NASH and HCC resulted in increased in-flammation status and shifts within the composition of the gut microbiome. Increased abun-dance of kielin/chordin, E3 ubiquitin ligase, and nucleophosmin 1 represented valuable fecal biomarkers indicating disease-related changes in the liver. Whereas a single biomarker failed to separate NASH and HCC, machine learning-based classification algorithms provided 0.86% accuracy in distinguishing between controls, NASH, and HCC. Conclusion: Fecal metaproteomics enables early detection of NASH and HCC by providing single biomarkers and ma-chine learning-based metaprotein panels.
Project description:Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disease worldwide, yet the pathogenesis of NAFLD is only partially understood. Here, we investigated the role of the gut bacteria in NAFLD by stimulating the gut bacteria via feeding mice the fermentable dietary fiber guar gum and suppressing the gut bacteria via chronic oral administration of antibiotics. Guar gum feeding profoundly altered the gut microbiota composition, in parallel with reduced diet-induced obesity and improved glucose tolerance. Strikingly, despite reducing adipose tissue mass and inflammation, guar gum enhanced hepatic inflammation and fibrosis, concurrent with markedly elevated plasma and hepatic bile acid levels. Consistent with a role of elevated bile acids in the liver phenotype, treatment of mice with taurocholic acid stimulated hepatic inflammation and fibrosis. In contrast to guar gum, chronic oral administration of antibiotics effectively suppressed the gut bacteria, decreased portal secondary bile acid levels, and attenuated hepatic inflammation and fibrosis. Neither guar gum or antibiotics influenced plasma lipopolysaccharide levels. In conclusion, our data indicate a causal link between changes in gut microbiota and hepatic inflammation and fibrosis in a mouse model of NAFLD, possibly via alterations in bile acids.
Project description:Periodontitis increases the risk of non-alcoholic fatty liver disease (NAFLD). However, the precise mechanisms are unclear. Here, gut dysbiosis induced by orally administered Porphyromonas gingivalis, a representative periodontopathic bacterium, was implicated in the deterioration of NAFLD pathology. C57BL/6 mice were administered with the vehicle, P. gingivalis or Prevotella intermedia, with weaker periodontal pathogenicity, followed by feeding on a choline-deficient, high fat diet (CDAHFD60). CDAHFD60 feeding induced hepatic steatosis, and combined bacterial administration further aggravated NAFLD pathology with increased fibrosis. Liver gene expression analyses revealed that genes involved in the NAFLD pathology were perturbed with distinctive expression profiles induced by different bacteria. These differences may be due to quantitative and qualitative differences in the influx of gut bacterial products because the serum endotoxin level, gut microbiota composition, and serum metabolite profile caused by ingested P. intermedia and P. gingivalis were different. These findings provide insights into mechanisms linking periodontitis and NAFLD.
Project description:Non–alcoholic fatty liver disease (NAFLD) is high prevalent in worldwide and associated with chronic kidney disease (CKD). Infection with Opisthorchis viverrini (Ov) infection and consumption of high fat and high fructose (HFF) exacerbates NAFLD to nonalcoholic steatohepatitis in hamsters. Here, we aimed to investigate the effect a combination of HFF diet and Ov infection on kidney pathology via alteration of gut microbiome and proteome in hamster.
Project description:Title: White adipose tissue inflammation and gut permeability develop prior to NASH development, associated with increased oxidative stress, intrahepatic diacylglycerol and proinflammatory chemokines in the liver of diet-induced obese and hyperinsulinemic Ldlr-/-.Leiden mice Abstract: NAFLD progression from simple steatosis to NASH and fibrosis is driven by an intricate interplay between molecular and cellular mechanisms. These drivers are not limited to the liver itself but also white adipose tissue and gut may contribute. Current knowledge on these drivers is mostly based on studies that investigate these at a single time point (typically end-stage disease). However, such studies provide no insight into the temporal dynamics and chronology, which therefore remain poorly understood. Ldlr-/-.Leiden mice were fed a high-fat diet (HFD) to induce obesity-associated NAFLD and compared to lean controls fed chow. Groups of mice were sacrificed after 8, 16, 28 and 38 weeks to study liver, white adipose tissue, gut and circulating factors to investigate the sequence of pathogenic events in these critical metabolically active organs as well as organ-crosstalk during NAFLD development. Ldlr-/-.Leiden mice on a HFD develop obesity, dyslipidemia and insulin resistance, essentially as observed in obese NASH patients, in this translational context WAT and gut dysfunction precede the development of NASH and liver fibrosis.