Project description:Humans and animals have problems producing eggs with high embryo developmental competence, but the causes of poor egg quality are usually unknown. This study delivered the first proteomic portraits of egg quality in zebrafish, a leading model for vertebrate development. Egg batches of good and poor quality, evidenced by embryo survival for 24 h, were used to create pooled or replicated sample sets subjected to different levels of fractionation before LC-MS/MS. Obtained spectra were searched against a custom zebrafish proteome database and detected proteins were annotated, categorized and quantified based on their normalized spectral counts. Manual and automated enrichment analyses were highly confirmative, showing that good and poor quality eggs have disparate proteomes. Proteins involved in protein synthesis, energy metabolism, and lipid metabolism, and certain vitellogenin products were strikingly underrepresented in poor quality eggs. Poor quality eggs also had significantly higher representation of proteins related to immune system and endosome/lysosome functioning, oncogenes, and apoptosis, as well as lectins and egg envelope proteins. Quantitative comparisons of highly abundant proteins revealed 9 candidate egg quality markers warranting further study. In conclusion, the zebrafish egg proteome appears to be linked to embryo developmental potential, a phenomenon that begs further investigation.
Project description:Humans and animals have problems producing eggs with high embryo developmental competence, but the causes of poor egg quality are usually unknown. This study delivered the first proteomic portraits of egg quality in zebrafish, a leading model for vertebrate development. Egg batches of good and poor quality, evidenced by embryo survival for 24 h, were used to create pooled or replicated sample sets subjected to different levels of fractionation before LC-MS/MS. Obtained spectra were searched against a custom zebrafish proteome database and detected proteins were annotated, categorized and quantified based on their normalized spectral counts. Manual and automated enrichment analyses were highly confirmative, showing that good and poor quality eggs have disparate proteomes. Proteins involved in protein synthesis, energy metabolism, and lipid metabolism, and certain vitellogenin products were strikingly underrepresented in poor quality eggs. Poor quality eggs also had significantly higher representation of proteins related to immune system and endosome/lysosome functioning, oncogenes, and apoptosis, as well as lectins and egg envelope proteins. Quantitative comparisons of highly abundant proteins revealed 9 candidate egg quality markers warranting further study. In conclusion, the zebrafish egg proteome appears to be linked to embryo developmental potential, a phenomenon that begs further investigation.
Project description:Purpose: Construction of 3D zebrafish spatial transcriptomics data for studying the establishment of AP axis. Methods: We performed serial bulk RNA-seq data of zebrafish embryo at three development points. Using the published spatial transcriptomics data as references, we implemented Palette to infer spatial gene expression from bulk RNA-seq data and constructed 3D embryonic spatial transcriptomics. The constructed 3D transcriptomics data was then projected on zebrafish embryo images with 3D coordinates, establishing a spatial gene expression atlas named Danio rerio Asymmetrical Maps (DreAM). Results: DreAM provides a powerful platform for visualizing gene expression patterns on zebrafish morphology and investigating spatial cell-cell interactions. Conclusions: Our work used DreAM to explore the establishment of anteroposterior (AP) axis, and identified multiple morphogen gradients that played essential roles in determining cell AP positions. Finally, we difined a hox score, and comprehensively demonstrated the spatial collinearity of Hox genes at single-cell resolution during development.
Project description:This study reports on infection-inducible miRNAs in zebrafish. Using a custom-designed microarray platform for miRNA expression we found that miRNAs of the miR-21, miR-29, and miR-146 families were commonly induced by infection of zebrafish embryos with Salmonella typhimurium and by infection of adult fish with Mycobacterium marinum.