Project description:LincRNA-EPS is a long noncoding RNA that is expressed in macrophages and downregulated upon exposure to diverse microbial products. Analysis of macrophages from lincRNA-EPS-deficient mice revealed a specific role for this lincRNA in restraining immune response gene (IRG) expression. Mechanistically, lincRNA-EPS associates with chromatin at regulatory regions of IRGs to repress their transcription. To gain insight into the molecular function of lincRNA-EPS on chromatin, we generated ATAC-Seq libraries from wildtype and lincRNA-EPS-deficient macrophages stimulated with LPS.
2016-05-08 | GSE78873 | GEO
Project description:Effects of Sulfamethoxazole on Aerobic Sludge Granulation Process
Project description:Lipopolysaccharide is a Microbe Associated Molecular Pattern (MAMP) that is known to induce defense responses in plants. In rice we have shown that Xoo LPS induce callose deposition, reactive oxygen production and induced resistance response. The exopolysaccaride (EPS) secreted by Xoo might be involved in supressing these defense responses. We have performed transcriptional profiling of rice leaf gene expression changes after treatment with Xoo strains BXO1003 (LPS-, EPS-), BXO1002 (LPS+ EPS-) and BXO43 (wild type) along with milliQ treated leaves to identify the genes that are differentially expressed. RNA was isolated from mid veins of rice leaves 15 hours after injecting them with Xoo strains BXO1003 (LPS-, EPS-), BXO1002 (EPS-), BXO43 (wild type) or milli-Q water. The rice gene expression in each of the treatment was normalized based on the gene expression in the milli-Q treatment.
Project description:Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures. To maximize PHA production, mixed microbial cultures may be enriched for PHA-producing bacteria with a high storage capacity through the imposition of cyclic, aerobic feast-famine conditions in a sequencing batch reactor (SBR). Though enrichment SBRs have been extensively investigated a bulk solutions-level, little evidence at the proteome level is available to describe the observed SBR behavior to guide future SBR optimization strategies. As such, the purpose of this investigation was to characterize proteome dynamics of a mixed microbial culture in an SBR operated under aerobic feast-famine conditions using fermented dairy manure as the feedstock for PHA production. At the beginning of the SBR cycle, excess PHA precursors were provided to the mixed microbial culture (i.e., feast), after which followed a long duration devoid of exogenous substrate (i.e., famine). Two-dimensional electrophoresis was used to separate protein mixtures during a complete SBR cycle, and proteins of interest were identified.
2017-01-31 | PXD003126 | Pride
Project description:Study of the impact of combined athropogenic stresses in aerobic granular sludge EPS production and bacterial composition
Project description:Lipopolysaccharide is a Microbe Associated Molecular Pattern (MAMP) that is known to induce defense responses in plants. In rice we have shown that Xoo LPS induce callose deposition, reactive oxygen production and induced resistance response. The exopolysaccaride (EPS) secreted by Xoo might be involved in supressing these defense responses. We have performed transcriptional profiling of rice leaf gene expression changes after treatment with Xoo strains BXO1003 (LPS-, EPS-), BXO1002 (LPS+ EPS-) and BXO43 (wild type) along with milliQ treated leaves to identify the genes that are differentially expressed.