Project description:The majority of bacterial genomes have high coding efficiencies, but there are an few genomes of the intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50% pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple omic strategies: combining single molecule DNA-sequencing and annotation; stranded RNA-sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53% and 74% of the Sodalis transcriptome remains active in cell-free culture. Mean sense transcription from Coding Domain Sequences (CDS) is four-times greater than that from pseudogenes. Core-genome analysis of six Illumina sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40% of the 2,729 genes in the core genome, suggesting are stable and/or Sodalis is a recent introduction across the Glossina genus as a facultative symbiont. These data further shed light on the importance of transcriptional and translational control in deciphering host-microbe interactions, and demonstrate that pseudogenes are more complex than a simple degrading DNA sequence. For this reason, we show that combining genomics, transcriptomics and proteomics represents an important resource for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches.
Project description:description Blastocystis sp. is a highly prevalent anaerobic eukaryotic parasite of humans and animals. The genome of several representatives has been sequenced revealing specific traits such as an intriguing 3’-end processing of primary transcripts. We have acquired a first high-throughput proteomics dataset on the difficult to cultivate ST4 isolate WR1 and detected 2,761 proteins. We evidenced for the first time by proteogenomics a functional termination codon derived from transcript polyadenylation for seven different key cellular components.
Project description:Transcriptome analysis of Sodalis glossinidius derived from uninfected (controls) and Trypanosoma brucei gambiense infection self cleared Glossina palpalis gambiensis. 10 days after infectived blood meal, flies anal drop were analysed by PCR to isolate the infected self cleared flies. Then, uninfected (controls) and infection self cleared 10 days-flies midgut were dissected for RNA extraction.
Project description:Transcriptome analysis of Sodalis glossinidius derived from Trypanosoma brucei gambiense infection self cleared and infected Glossina palpalis gambiensis. At 3 time points (3, 10 and 20 days) after infectived blood meal, flies were analysed by PCR to isolate the infected and infection self cleared flies. Then, infected and infection self cleared flies midgut were dissected for RNA extraction.