Project description:Limited CITE-seq antibody panel and 5' gene expression profiling of human nasopharyngeal cells collected with flocked swabs, paired with TCR and BCR sequencing of NP lymphocytes. FACS-sorted SARS-CoV-2 antigen-specific memory B and T cells with 5' gene expression profiling and scBCR and scTCRseq.
Project description:This a model from the article:
Evolution of immunological memory and the regulation of competition between
pathogens.
Wodarz D. Curr Biol
2003 Sep 16;13(18):1648-52 13678598
,
Abstract:
Memory is a central characteristic of immune responses. It is defined as an
elevated number of specific immune cells that remain after resolution of
infection and can protect the host against reinfection. The evolution of
immunological memory is subject to debate. The advantages of memory discussed so
far include protection from reinfection, control of chronic infection, and the
transfer of immune function to the next generation. Mathematical models are used
to identify a new force that can drive the evolution of immunological memory:
the duration of memory can regulate the degree of competition between different
pathogens. While a long duration of memory provides lasting protection against
reinfection, it may also allow an inferior pathogen species to persist. This can
be detrimental for the host if the inferior pathogen is more virulent. On the
other hand, a shorter duration of memory ensures that an inferior pathogen
species is excluded. This can be beneficial for the host if the inferior
pathogen is more virulent. Thus, while in the absence of pathogen diversity
memory is always expected to evolve to a long duration, under specific
circumstances, memory can evolve toward shorter durations in the presence of
pathogen diversity.
This model was taken from the CellML repository
and automatically converted to SBML.
The original model was:
Wodarz D. (2003) - version=1.0
The original CellML model was created by:
Catherine Lloyd
c.lloyd@auckland.ac.nz
The University of Auckland
This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication
for more information.
In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.
Project description:Molecular profiling studies in asthma cohorts have identified a Th2-driven asthma subtype, characterized by elevated lower airway expression of POSTN, CLCA1 and SERPINB2. To assess upper airway gene expression as a potential biomarker for lower airway Th2 inflammation, we assayed upper airway (nasal) and lower airway (bronchial) epithelial gene expression, serum total IgE, blood eosinophils and serum periostin in a cohort of 54 allergic asthmatics and 30 matched healthy controls. 23 of 51 asthmatics in our cohort were classified as âTh2 highâ based on lower airway Th2 gene signature expression. Consistent with this classification, âTh2 highâ subjects displayed elevated total IgE and blood eosinophil levels relative to âTh2 lowâ subjects. Upper airway Th2 signature expression was significantly correlated with lower airway Th2 signature expression (r=0.44), with similar strength of association as serum total IgE and blood eosinophils, known biomarkers of Th2 inflammation. In an unbiased genome-wide scan, we identified 8 upper airway genes more strongly correlated with lower airway Th2 gene signature expression (r=0.58), including Eotaxin-3 (CCL26), Galectin-10 (CLC) and Cathepsin-C (CTSC). Asthmatics classified as âTh2 highâ using this 8-gene signature show similar serum total IgE and blood eosinophil levels as âTh2 highâ asthmatics classified using lower airway Th2 gene signature expression. We have identified an 8-gene upper airway signature correlated with lower airway Th2 inflammation, which may be used as a diagnostic biomarker for Th2-driven asthma. Upper airway (nasal) and lower airway (bronchial) epithelial brushings obtained from a cohort of 54 allergic asthmatics and 30 matched healthy controls were profiled by gene expression by microarray. Subjects were assayed for gene expression, serum total IgE, blood eosinophils and serum periostin.
Project description:Molecular profiling studies in asthma cohorts have identified a Th2-driven asthma subtype, characterized by elevated lower airway expression of POSTN, CLCA1 and SERPINB2. To assess upper airway gene expression as a potential biomarker for lower airway Th2 inflammation, we assayed upper airway (nasal) and lower airway (bronchial) epithelial gene expression, serum total IgE, blood eosinophils and serum periostin in a cohort of 54 allergic asthmatics and 30 matched healthy controls. 23 of 51 asthmatics in our cohort were classified as ‘Th2 high’ based on lower airway Th2 gene signature expression. Consistent with this classification, ‘Th2 high’ subjects displayed elevated total IgE and blood eosinophil levels relative to ‘Th2 low’ subjects. Upper airway Th2 signature expression was significantly correlated with lower airway Th2 signature expression (r=0.44), with similar strength of association as serum total IgE and blood eosinophils, known biomarkers of Th2 inflammation. In an unbiased genome-wide scan, we identified 8 upper airway genes more strongly correlated with lower airway Th2 gene signature expression (r=0.58), including Eotaxin-3 (CCL26), Galectin-10 (CLC) and Cathepsin-C (CTSC). Asthmatics classified as ‘Th2 high’ using this 8-gene signature show similar serum total IgE and blood eosinophil levels as ‘Th2 high’ asthmatics classified using lower airway Th2 gene signature expression. We have identified an 8-gene upper airway signature correlated with lower airway Th2 inflammation, which may be used as a diagnostic biomarker for Th2-driven asthma.
Project description:Immunological memory is generally thought to be mediated exclusively by lymphocytes such as memory T and B cells. However, enhanced innate immune responses caused by a previous infection increase protection against reinfection suggesting the presence of innate immunological memory. Here, we describe expression profile of peritoneal macrophages from wild-type mice pre-administrated with TLR ligands or from ATF7 knockout mice. ATF7 suppresses a group of innate-immunity genes in macrophage by recruiting H3K9 dimethyltransferase G9a. TLR ligands induce ATF7 phosphorylation, leading to release of ATF7 from chromatin and reduction in H3K9me2 level. Partially disrupted chromatin structure and increased basal expression on target genes are maintained for a long period, increasing resistance pathogens. Therefore we speculate ATF7 is important factor in controlling innate immunological memory. This series contains seven sets of exression array data. For all sample, we use four CEL files generated by four biological-independent experiments.
Project description:Immunological memory is generally thought to be mediated exclusively by lymphocytes such as memory T and B cells. However, enhanced innate immune responses caused by a previous infection increase protection against reinfection suggesting the presence of innate immunological memory. Here, we describe 3,811 ATF7 binding sites in mouse peritoneal macrophages, and 95% of the ATF7 signals in wild-type macrophages are lost in ATF7 knockout macrophages. ATF7 suppresses a group of innate-immunity genes in macrophage by recruiting H3K9 dimethyltransferase G9a. TLR ligands induce ATF7 phosphorylation, leading to release of ATF7 from chromatin and reduction in H3K9me2 level. Partially disrupted chromatin structure and increased basal expression on target genes are maintained for a long period, increasing resistance pathogens. Therefore we speculate ATF7 is important factor in controlling innate immunological memory. This series contains one set of whole genome ChIP-chip data and 2 sets of promoter array ChIP-chip data. For all sample, we use three IP .CEL files and three WCE .CEL files (they are triplicated experiments) to make one profile.