Project description:The hpCasMINI exhibits high specificity for gene editing. Compared to SpCas9 and LbCas12a, hpCasMINI also exhibited higher specificity for genomic DNA cleavage at the tested sites.
Project description:RNA-guided nucleases (RGNs) based on CRISPR systems permit installing short and large edits within eukaryotic genomes. However, precise genome editing is often hindered due to nuclease off- target activities and the multiple-copy character of the vast majority of chromosomal sequences. Dual nicking RGNs and high-specificity RGNs both exhibit low off-target activities. Here, we report that high-specificity Cas9 nucleases are convertible into nicking Cas9D10A variants whose precision is superior to that of the commonly used Cas9D10A nickase. Dual nicking RGNs based on a selected group of these Cas9D10A variants can yield gene knockouts and gene knock-ins at frequencies similar to or higher than those achieved by their conventional counterparts. Moreover, high-specificity dual nicking RGNs are capable of distinguishing highly similar sequences by “tiptoeing” over pre-existing single base-pair polymorphisms. Finally, high-specificity RNA-guided nicking complexes generally preserve genomic integrity, as demonstrated by unbiased genome-wide high-throughput sequencing assays. Thus, in addition to substantially enlarging the Cas9 nickase toolkit, we demonstrate the feasibility in expanding the range and precision of genome editing procedures. The herein introduced tools and multi-tier high-specificity genome editing strategies might be particularly beneficial whenever predictability and/or safety of genetic manipulations are paramount.
Project description:Ex-vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases by non-homologous end joining (NHEJ) gene disruption or homology-driven repair (HDR) gene correction. Gene editing encompasses delivery of nucleases by electroporation and, when aiming to HDR, of a DNA template often provided by viral vectors. Whereas HSPCs activate robust p53-dependent DNA damage response (DDR) upon editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multi-omics analyses and found that electroporation is the culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism and inducing inflammatory response. Nuclease delivery by lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding higher number of edited cells compared to electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher reconstitution by long-term repopulating HSPCs compared to electroporation, reaching similar editing efficiencies. Overall, LNPs may allow efficient and stealthier ex-vivo gene editing in hematopoietic cells for treatment of human diseases.
Project description:CRISPRs and TALENs are efficient systems for gene editing in many organisms including plants. In many cases the CRISPR-Cas or TALEN modules are expressed in the plant cell only transiently. Theoretically, transient expression of the editing modules should limit unexpected effects compared to stable transformation. However, very few studies have measured the off-target and unpredicted effects of editing strategies on the plant genome, and none of them have compared these two major editing systems. We conducted a comprehensive genome-wide investigation of off-target mutations using either a CRISPR-Cas9 or a TALEN strategy. We observed a similar number of SNVs and InDels for the two editing strategies compared to control non-transfected plants, with an average of 8.25 SNVs and 19.5 InDels for the CRISPR-edited plants, and an average of 17.5 SNVs and 32 InDels for the TALEN-edited plants. Interestingly, a comparable number of SNVs and InDels could be detected in the PEG-treated control plants. This shows that except for the on-target modifications, the gene editing tools used in this study did not show a significant off-target activity nor unpredicted effects on the genome, and that the PEG treatment in itself was probably the main source of mutations found in the edited plants.
Project description:Purpose: RNA editing by ADAR1 is essential for hematopoietic development. The goals of this study were firstly, to identify ADAR1-specific RNA-editing sites by indentifying A-to-I (G) RNA editing sites in wild type mice that were not edited or reduced in editing frequency in ADAR1 deficient murine erythroid cells. Secondly, to determine the transcription consequence of an absence of ADAR1-mediated A-to-I editing. Methods: Total RNA from E14.5 fetal liver of embryos with an erythroid restricted deletion of ADAR1 (KO) and littermate controls (WT), in duplicate. cDNA libraries were prepared and RNA sequenced using Illumina HiSeq2000. The sequence reads that passed quality filters were analyzed at the transcript level with TopHat followed by Cufflinks. qRTâPCR validation was performed using SYBR Green assays. A-to-I (G) RNA editing sites were identified as previously described by Ramaswami G. et al., Nature Methods, 2012 using BurrowsâWheeler Aligner (BWA) followed by ANOVA (ANOVA). RNA editing sites were confirmed by Sanger sequencing. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 14,484 transcripts in the fetal livers of WT and ADAR1E861A mice with BWA. RNA-seq data had a goodness of fit (R2) of >0.7, p<0.0001 between biological duplicates per genotype. Clusters of hyper-editing were onserved in long, unannotated 3'UTRs of erythroid specific transcripts. A profound upregulation of interferon stimulated genes were found to be massively upregulated (up to 5 log2FC) in KO fetal liver compared to WT. 11.332 (6,894 novel) A-to-I RNA editing sites were identified when assessing mismatches in RNA-seq data. Conclusions: Our study represents the first detailed analysis of erythroid transcriptomes and A-to-I RNA editing sites, with biologic replicates, generated by RNA-seq technology. A-to-I RNA editing is the essential function of ADAR1 and is required to prevent sensing of endogenous transcripts, likely via a RIG-I like receptor mediated axis. Fetal liver mRNA profiles of E14.5 wild type (WT) and ADAR Epor-Cre knock out mice were generated by deep sequencing, in duplicate using Illumina HiSeq 2000.