Project description:This study evaluates the transcriptome of Arabidopsis thaliana seedlings growing in the presence of a 35-member bacterial SynCom under different phosphate availability
Project description:This study evaluates the transcriptome of Arabidopsis thaliana seedlings growing in the presence of a 185-member bacterial SynCom under different phosphate availability
Project description:This study evaluates the transcriptome of Arabidopsis thaliana roots exposed to the MAMP flg22 in the presence of a 35-member bacterial SynCom
Project description:To explore the ecological basis for multiple bacteria species coexistence, we set up three bacteria (Ruegeria pomeroyi DSS-3, Vibrio hepatarius HF70, and Thalassospira sp. HF15), either in monoculture or in co-cultures (in all combinations) for a 8 day growth-dilution cycles. At ~15h of day 4 (P4) and day 8 (P8) of growth-dilution cycles, we examined transcriptomic responses of these bacteria. Differential gene expressions were used to generate hypothesis about ecological and physiological responses of one in the presence of another/other bacteria.
Project description:This study evaluated the transcriptomic profiles of Arabidopsis thaliana (Col-0) plants grown along four SynCom treatments that induced differential primary root growth. Treatments Dropout Variovorax and DropoutVariovoraxBurkholderia induced primary root growth inhibition (RGI), while treatments Full and DropoutBurkholderia mantained a stereotypical long primary root.
Project description:To explore the usefulness of Brachypodium distachyon for drought studies, a reproducible in soil drought assay was developed. Spontaneous soil drying led to a 45% reduction in leaf size, and this most mostly due to a decrease in cell expansion, whereas cell division remained largely unaffected by drought. To investigate the molecular basis of the observed leaf growth reduction, Brachypodium leaf 3 was dissected in three zones, namely the proliferation, expansion and mature zone, and subjected to transcriptome analysis using a Affymetrix whole-genome tiling array. This approach allowed us to highlight that transcriptome profiles of different developmental leaf zones respond differently to drought. Several genes and biological processes involved in drought tolerance were identified. Mainly, we observed an increased energy availability in the proliferation zone along with an upregulation of sterol synthesis that may influence membrane fluidity. 24 samples of Brachypodium leaf 3 harvested about 24 hours after the emergence of leaf 3, mild drought stress was performed for 2 biological replicates, severe drought stress and control condition was performed for 3 biological replicates. 3 developmental zones, namely the proliferation, expansion and mature zone, are dissected from leaf 3.
Project description:To explore the usefulness of Brachypodium distachyon for drought studies, a reproducible in soil drought assay was developed. Spontaneous soil drying led to a 45% reduction in leaf size, and this most mostly due to a decrease in cell expansion, whereas cell division remained largely unaffected by drought. To investigate the molecular basis of the observed leaf growth reduction, Brachypodium leaf 3 was dissected in three zones, namely the proliferation, expansion and mature zone, and subjected to transcriptome analysis using a Affymetrix whole-genome tiling array. This approach allowed us to highlight that transcriptome profiles of different developmental leaf zones respond differently to drought. Several genes and biological processes involved in drought tolerance were identified. Mainly, we observed an increased energy availability in the proliferation zone along with an upregulation of sterol synthesis that may influence membrane fluidity.
Project description:Soil microbial community is a complex blackbox that requires a multi-conceptual approach (Hultman et al., 2015; Bastida et al., 2016). Most methods focus on evaluating total microbial community and fail to determine its active fraction (Blagodatskaya & Kuzyakov 2013). This issue has ecological consequences since the behavior of the active community is more important (or even essential) and can be different to that of the total community. The sensitivity of the active microbial community can be considered as a biological mechanism that regulates the functional responses of soil against direct (i.e. forest management) and indirect (i.e. climate change) human-induced alterations. Indeed, it has been highglihted that the diversity of the active community (analyzed by metaproteomics) is more connected to soil functionality than the that of the total community (analyzed by 16S rRNA gene and ITS sequencing) (Bastida et al., 2016). Recently, the increasing application of soil metaproteomics is providing unprecedented, in-depth characterisation of the composition and functionality of active microbial communities and overall, allowing deeper insights into terrestrial microbial ecology (Chourey et al., 2012; Bastida et al., 2015, 2016; Keiblinger et al., 2016). Here, we predict the responsiveness of the soil microbial community to forest management in a climate change scenario. Particularly, we aim: i) to evaluate the impacts of 6-years of induced drought on the diversity, biomass and activity of the microbial community in a semiarid forest ecocosystem; and ii) to discriminate if forest management (thinning) influences the resistance of the microbial community against induced drought. Furthermore, we aim to ascertain if the functional diversity of each phylum is a trait that can be used to predict changes in microbial abundance and ecosystem functioning.