Project description:Transcriptome response of avocado roots subjected to flooding, infection by the oomycete Phytophthora cinnamomi or a combination of both. Analysis was carried out at two time-points. Aim was to identify important genes in response to these stresses.
Project description:Phytophthora cinnamomi is one of the most invasive tree pathogens that devastates wild and cultivated forests. Due to its wide host range, knowledge of the infection process at the molecular level is lacking for most of its tree hosts. To expand the repertoire of studied Phytophthora-woody plant interactions and identify molecular mechanisms that can facilitate discovery of novel ways to control its spread and damaging effects, we focused on the interaction between P. cinnamomi and sweet chestnut (Castanea sativa), an economically important tree for the wood processing industry. By using a combination of proteomics, metabolomics, and targeted hormonal analysis, we mapped the effects of P. cinnamomi attack on stem tissues immediately bordering the infection site and away from it. P. cinnamomi led to a massive reprogramming of the chestnut proteome and accumulation of the stress-related hormones salicylic acid (SA) and jasmonic acid (JA) indicating that stem inoculation can be used as an easily accessible model system to identify novel molecular players in P. cinnamomi pathogenicity
Project description:Phytophthora cinnamomi Rands is a cosmopolite and phyllophagous pathogen of woody plants which during the last couple of centuries has spread all over the world from its center of origin in Southeast Asia. Despite Chinese cork tree (Quercus variabilis Blume) forests native to Asia being generally healthy, the populations of cork trees (Quercus suber L.) in Europe have been decimated by P. cinnamomi. The present study tries to identify the differences in the early proteomic and metabolomic response of these two tree species that lead to their contrasting susceptibility to P. cinnamomi attack. By using micropropagated clonal plants, we tried to minimize the plant-to-plant differences in the defense response that is maximized by the high intraspecific genetic variability inherent to the Quercus genus. The evolution on the content of Phytophthora proteins in the roots during the first 36 hours after inoculation suggest a slower infection process in Q. variabilis plants. These plants displayed a significant decrease in sugars in the roots, together with a downregulation of proteins related to carbon metabolism. In the leaves, the biggest changes in proteomic profiling were observed 16 hours after inoculation. and included increased abundance of peroxidases, superoxidedismutases and gluthatione S-transferases in Q. variabilis plants, which probably aided its resistance against P. cinnamomi attack.
2022-08-02 | PXD033162 | Pride
Project description:RNA seq data Phytophthora cinnamomi
Project description:This study aimed to investigate the physiological and molecular responses of Solanum lycopersicum (tomato) to Phytophthora cinnamomi infection. The initial defense response in tomato seeds included the production of reactive oxygen species (ROS) and callose deposition. Screening of commercial tomato varieties revealed varying levels of susceptibility, with the variety Marmande exhibiting heightened vulnerability. Three days post-inoculation, Marmande showed increased expression of genes associated with ROS generation, and biosynthesis pathways for phenylpropanoids and flavonoids. Additionally, 850 genes related to cell wall remodeling, including those involved in lignin biosynthesis and pectin methyl esterase inhibitors (PMEIs), were significantly upregulated. Seven days post-inoculation, a stronger transcriptional response was observed, with activation of ethylene (ET) and jasmonic acid (JA) signaling pathways, while salicylic acid (SA) showed minimal activity. Metabolomic analysis of infected roots revealed elevated levels of metabolites linked to lycopene, flavonoids, and phenylpropanoids. Furthermore, infected roots exhibited a significant reduction in pectin levels, which was corroborated by in vitro assays showing zoospore-mediated pectin degradation. These results suggest that degradation of root pectin is a key mechanism facilitating zoospore invasion in susceptible tomato hosts. This study provides new insights into the molecular mechanisms underlying host-pathogen interactions and identifies potential targets for managing Phytophthora cinnamomi-induced diseases in crops.