Project description:Purpose: The goal of this study is to understand the signaling pathway alteration in cancer cell line treated with TEAD palmitoylation inhibitor MGH-CP1, and to further validate TEAD inhibitor for specifity in TEAD-YAP interuption. Methods:Breast cancer cell line MDA-MB-231 was chosen to be treated with TEAD palmitoylation inhibitor MGH-CP1 at 10μM for 24 hours. Total RNA was isolated for the analysis. RNA samples were sent to Novogen for library construction, RNA sequencing and raw data process. Results: MGH-CP1 specifically blocks TEAD transcriptional activity compared with YAP/TAZ siRNA in MDA-MB-231 cells. Conclusions: Our study privides gene expression profiling evidence to validate our TEAD palmitoylation inhibitor MGH-CP1 as specific small molecule to block TEAD transcriptional activity. We report the application of next generation sequencing technology for high-throughput profiling of TEAD palmitoylation inhibitor MGH-CP1 in breast cancer cells.
Project description:Purpose: The goal of this study is to understand the signaling pathway alteration inMDA-MB-231cells treated with TEAD autopalmitoylation inhibitor MGH-CP1, and to further validate TEAD inhibitor for specifity in TEAD-YAP interuption. Methods:Breast cancer cell line MDA-MB-231 was chosen to be treated with TEAD palmitoylation inhibitor MGH-CP1 at 10μM for 24 hours. Total RNA was isolated for the analysis. RNA samples were sent to Novogen for library construction, RNA sequencing and raw data process. Conclusions: Our study privides gene expression profiling evidence to validate our TEAD palmitoylation inhibitor MGH-CP1 as specific small molecule to block TEAD transcriptional activity.
Project description:Purpose: There are no effective treatment options for patients with aggressive epithelioid hemangioendothelioma (EHE) driven by the TAZ-CAMTA1 (TC) fusion gene. Here, we aimed to understand the regulation of TC using pharmacological tools and identify vulnerabilities that can potentially be exploited for the treatment of EHE. Design: TC is a transcriptional co-regulator; we hypothesized that compounds that reduce TC nuclear levels, either through translocation of TC to the cytoplasm, or through degradation, would render TC less oncogenic. TC localization was monitored using immunofluorescence (IF) in an EHE tumor cell line. Two target-selective libraries were used to identify small molecules that reduce TC localization in the nucleus. The ability of the shortlisted hits to affect cell viability, apoptosis, and tumorigenesis was also evaluated. Results: Basal TC remained ‘immobile’ in the nucleus; administration of cyclin-dependent kinase inhibitors (CDKi) such as CGP60474 and dinaciclib mobilized TC. ‘Mobile’ TC shuttled between the nucleus and cytoplasm; however, it was eventually degraded through proteasomes. This dramatically suppressed the levels of TC-regulated transcripts and cell viability, promoted apoptosis, and reduced the area of metastatic lesions in the allograft model of EHE. We specifically identified that the inhibition of CDK9, a transcriptional CDK, destabilizes TC. Conclusions: The CDK inhibitor dinaciclib exhibited anti-tumorigenic properties both in vitro and in vivo in EHE models. Dinaciclib has been rigorously tested in clinical trials and displayed an acceptable toxicity profile. Therefore, there is a potential therapeutic window for repurposing dinaciclib for the treatment of EHE.