Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:The mouse stool samples were collected from different diets fed mice and bacterial cells were harvest for metaproteomic analysis for understanding the role ofdiet on gut microbiota.
Project description:Dietary lipids and gut microbiota may both influence adipose tissue physiology. By feeding conventional and germ-free mice high fat diets with different lipid compositon we aimed to investigate how dietary lipids and the gut microbiota interact to influence inflammation and metabolism in the liver Wild-type C57Bl/6 male mice 11 weeks of age were fed isocaloric diets (45% kcal fat) with either menhaden fish oil (Research Diets, D05122102) or lard (Research Diets, D10011202) for 11 weeks. Liver samples were harvested at the end of the experiment and analyzed by microarray.
Project description:Dietary lipids and gut microbiota may both influence adipose tissue physiology. By feeding conventional and germ-free mice high fat diets with different lipid compositon we aimed to investigate how dietary lipids and the gut microbiota interact to influence inflammation and metabolism in epididymal adipiose tissue (EWAT) Wild-type C57Bl/6 male mice 11 weeks of age were fed isocaloric diets (45% kcal fat) with either menhaden fish oil (Research Diets, D05122102) or lard (Research Diets, D10011202) for 11 weeks. Epididymal WAT samples were harvested at the end of the experiment and analyzed by microarray.
Project description:To determine whether diet-induced changes in gut microbiota modified intestinal immune cell gene expression, we analyzed the transcriptome of CD4 T lymphocytes isolated from the lamina propria of the small intestine from mice fed with different diets.
Project description:To determine whether diet-induced changes in gut microbiota modified intestinal immune cell gene expression, we analyzed the transcriptome of antigen presenting cells isolated from the lamina propria of the small intestine of mice fed with different diet.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.
Project description:In this study, the minimal consortium Oligo-Mouse Microbiota (OMM)12 was used to study the function of Coriobacteriia under defined conditions in gnotobiotic mice. OMM12 mice with or without adding the dominant gut bacterium Eggerthella lenta were fed with diets varying in fat content or supplemented with primary bile acids. Changes in the host liver proteomes were studied using untargeted proteomics.