Project description:Purpose: Mating induces a multitude of changes in female behavior, physiology and gene expression. Interactions between female and male genotype lead to variation in post-mating phenotypes and reproductive success. So far, few female molecules responsible for these interactions have been identified. Methods: We used Drosophila melanogaster from five geographically dispersed populations to investigate such female x male genotypic interactions at the female transcriptomic and phenotypic levels. Methods: Females from each line were singly-mated to males from the same five lines, for a total of 25 combinations. To assess whether female x male genotypic interactions affect the female post-mating transcriptome, next-generation RNA sequencing was performed on virgin and mated females at 5 to 6 hours post-mating. Results: Seventy-seven genes showed strong variation in mating-induced expression changes in a female x male genotype-dependent manner. These genes were enriched for immune response and odorant-binding functions, and for expression exclusively in the head. Conclusions: The transcriptional variation found in specific functional classes of genes might be a read-out of female x male compatibility at a molecular level. Understanding the roles these genes play in the female post-mating response will be crucial to better understand the evolution of post-mating responses and related conflicts between the sexes.
Project description:The female’s reproductive tract is exposed directly to the male’s ejaculate, making it a hotspot for mating-induced responses shortly after mating. In Drosophila melanogaster, changes in the reproductive tract are essential to optimize fertilization. To detect the earliest gene regulatory events that underlie these changes, we measured transcript abundances using RNA-seq and microRNA-seq of reproductive tracts of unmated females and females collected within 10-15 minutes after the end of mating, either to a wildtype male or to a male with defective BMP signaling in secondary cells of the accessory gland, which influences the composition of the male’s ejaculate. We observed transcript abundance changes for genes with roles in tissue morphogenesis, wound healing, the immune response and metabolism. Strikingly, predicted targets of microRNAs that respond to mating are enriched for overlapping functions, suggesting that mating-induced changes are in part regulated by microRNAs. Most of the differentially expressed RNAs are upregulated in response to mating, while most of the differentially expressed microRNAs are downregulated. This pattern suggests a response of activation and de-repression of gene programs that switch the reproductive tract to a “mated” state, rather than a repression of virgin-specific programs. Male genotype did not influence transcript levels, indicating that the earliest transcriptomic responses in the reproductive tract are not dependent on ejaculate components that require BMP signaling in secondary cells. Our results shed light on the molecular changes that accompany very early responses to mating and present candidate genes and microRNAs that can be further examined for their participation in alterations of the reproductive tract microenvironment in response to signals from the male.
Project description:The female’s reproductive tract is exposed directly to the male’s ejaculate, making it a hotspot for mating-induced responses shortly after mating. In Drosophila melanogaster, changes in the reproductive tract are essential to optimize fertilization. To detect the earliest gene regulatory events that underlie these changes, we measured transcript abundances using RNA-seq and microRNA-seq of reproductive tracts of unmated females and females collected within 10-15 minutes after the end of mating, either to a wildtype male or to a male with defective BMP signaling in secondary cells of the accessory gland, which influences the composition of the male’s ejaculate. We observed transcript abundance changes for genes with roles in tissue morphogenesis, wound healing, the immune response and metabolism. Strikingly, predicted targets of microRNAs that respond to mating are enriched for overlapping functions, suggesting that mating-induced changes are in part regulated by microRNAs. Most of the differentially expressed RNAs are upregulated in response to mating, while most of the differentially expressed microRNAs are downregulated. This pattern suggests a response of activation and de-repression of gene programs that switch the reproductive tract to a “mated” state, rather than a repression of virgin-specific programs. Male genotype did not influence transcript levels, indicating that the earliest transcriptomic responses in the reproductive tract are not dependent on ejaculate components that require BMP signaling in secondary cells. Our results shed light on the molecular changes that accompany very early responses to mating and present candidate genes and microRNAs that can be further examined for their participation in alterations of the reproductive tract microenvironment in response to signals from the male.
Project description:Mating triggers physiological and behavioral changes in females. To understand how females effect these changes, we used microarray, to characterize gene expression in oviducts of mated and unmated Drosophila females. The transition from nonegg laying to egg laying elicits a distinct molecular profile in the oviduct.
Project description:In Drosophila melanogaster, mating radically transforms female physiology and behavior. Post-mating responses include an increase in the oviposition rate, a reduction in female receptivity, and an activation of the immune system . The fitness consequences of mating are similarly dramatic – females must mate once in order to produce fertile eggs, but additional matings have a clear negative effect. Previously, microarrays have been used to examine gene expression of females differing in their reproductive status with the aim of identifying genes influenced by mating. However, since only virgin and single mated females were compared, transcriptional changes associated with reproduction (under natural selection) and the effects of male-induced harm (under sexually antagonistic selection) cannot be disentangled. We partitioned these fundamentally different effects by instead examining the expression profiles of virgin, single mated and double mated females. We found substantial effects relating to reproduction and further effects that are only attributable to a second mating. Immune response genes dominate this male-induced harm effect indicating that the cost of mating may be due partly to this system's activation. We propose that both sexually antagonistic and natural selection have been important in the evolution of the innate immunity genes, thereby contributing to the sexual dimorphismand rapid evolution at these loci. Keywords: Female response to mating
Project description:The innate immune response of insects relies on several humoral and cellular mechanisms that require the activation of circulating proteases in the hemolymph to be functional. Here, we analyzed the gelatinase and caseinase activities of Drosophila larval hemolymph under normal and pathogenic conditions (bacterial lipopolysaccharides or endoparasitoid Leptopilina boulardi) using in gel zymography. Gelatinase activity was more intense than caseinase activity and qualitative and quantitative variations were observed between D. melanogaster strains and Drosophila species. Mass spectrometry identified a large number of serine proteases in gel bands equivalent to the major gelatinase and caseinase bands and of these, the most abundant and redundant were Tequila and members of the Jonah and Trypsin protease families. However, hemolymph from Tequila null mutant larvae showed no obvious changes in zymographic bands. Nor did we observe any significant changes in hemolymph gelatinases activity 24 h after injection of bacterial lipopolysaccharides or after oviposition by endoparasitoid wasps. These data confirmed that many serine proteases are present in Drosophila larval hemolymph but those with gelatinase and caseinase activity may not change drastically during the immune response.
Project description:In Drosophila melanogaster, mating radically transforms female physiology and behavior. Post-mating responses include an increase in the oviposition rate, a reduction in female receptivity, and an activation of the immune system . The fitness consequences of mating are similarly dramatic – females must mate once in order to produce fertile eggs, but additional matings have a clear negative effect. Previously, microarrays have been used to examine gene expression of females differing in their reproductive status with the aim of identifying genes influenced by mating. However, since only virgin and single mated females were compared, transcriptional changes associated with reproduction (under natural selection) and the effects of male-induced harm (under sexually antagonistic selection) cannot be disentangled. We partitioned these fundamentally different effects by instead examining the expression profiles of virgin, single mated and double mated females. We found substantial effects relating to reproduction and further effects that are only attributable to a second mating. Immune response genes dominate this male-induced harm effect indicating that the cost of mating may be due partly to this system's activation. We propose that both sexually antagonistic and natural selection have been important in the evolution of the innate immunity genes, thereby contributing to the sexual dimorphismand rapid evolution at these loci. Keywords: Female response to mating Female flies were flash frozen in liquid nitrogen either as virgins or 6 hours after mating and stored at -80°C until RNA extraction was performed (not more than 2 days). 8 whole flies – randomly selected within each treatment – were pooled for each extraction. Total RNA was extracted using Trizol (Invitrogen) and purified with an RNeasy Mini Kit (Qiagen). RNA quantity and quality was checked with an Agilent Bioanalyzer. According to the manufacturer's instructions, samples were prepared and hybridized to Affymetrix GeneChip Drosophila Genome 2.0 (Affymetrix, Santa Clara, CA, USA) by the Uppsala Array Platform (Uppsala, Sweden). Each experimental treatment consisted of 4 independent RNA extractions and hybridizations, giving a total of 12 arrays.