Project description:Purpose: Mating induces a multitude of changes in female behavior, physiology and gene expression. Interactions between female and male genotype lead to variation in post-mating phenotypes and reproductive success. So far, few female molecules responsible for these interactions have been identified. Methods: We used Drosophila melanogaster from five geographically dispersed populations to investigate such female x male genotypic interactions at the female transcriptomic and phenotypic levels. Methods: Females from each line were singly-mated to males from the same five lines, for a total of 25 combinations. To assess whether female x male genotypic interactions affect the female post-mating transcriptome, next-generation RNA sequencing was performed on virgin and mated females at 5 to 6 hours post-mating. Results: Seventy-seven genes showed strong variation in mating-induced expression changes in a female x male genotype-dependent manner. These genes were enriched for immune response and odorant-binding functions, and for expression exclusively in the head. Conclusions: The transcriptional variation found in specific functional classes of genes might be a read-out of female x male compatibility at a molecular level. Understanding the roles these genes play in the female post-mating response will be crucial to better understand the evolution of post-mating responses and related conflicts between the sexes.
Project description:Temporal gene expression changes in head tissues from mated females was determined at four time points post-mating, from 0-2 hours out to 72 hours. Each time point assayed post-mating showed a unique post-mating gene expression response, with 48 hours post-mating having the largest number of genes with expression changes. At most time points, a marked change in expression of genes expressed in the head fat body and encode products that function in metabolism was observed. Additionally, gene expression was analyzed at 24 hours post-mating in brain tissues, identifying the repressed expression of several genes encoding ion channels.
Project description:The female’s reproductive tract is exposed directly to the male’s ejaculate, making it a hotspot for mating-induced responses shortly after mating. In Drosophila melanogaster, changes in the reproductive tract are essential to optimize fertilization. To detect the earliest gene regulatory events that underlie these changes, we measured transcript abundances using RNA-seq and microRNA-seq of reproductive tracts of unmated females and females collected within 10-15 minutes after the end of mating, either to a wildtype male or to a male with defective BMP signaling in secondary cells of the accessory gland, which influences the composition of the male’s ejaculate. We observed transcript abundance changes for genes with roles in tissue morphogenesis, wound healing, the immune response and metabolism. Strikingly, predicted targets of microRNAs that respond to mating are enriched for overlapping functions, suggesting that mating-induced changes are in part regulated by microRNAs. Most of the differentially expressed RNAs are upregulated in response to mating, while most of the differentially expressed microRNAs are downregulated. This pattern suggests a response of activation and de-repression of gene programs that switch the reproductive tract to a “mated” state, rather than a repression of virgin-specific programs. Male genotype did not influence transcript levels, indicating that the earliest transcriptomic responses in the reproductive tract are not dependent on ejaculate components that require BMP signaling in secondary cells. Our results shed light on the molecular changes that accompany very early responses to mating and present candidate genes and microRNAs that can be further examined for their participation in alterations of the reproductive tract microenvironment in response to signals from the male.
Project description:In Drosophila melanogaster, mating radically transforms female physiology and behavior. Post-mating responses include an increase in the oviposition rate, a reduction in female receptivity, and an activation of the immune system . The fitness consequences of mating are similarly dramatic – females must mate once in order to produce fertile eggs, but additional matings have a clear negative effect. Previously, microarrays have been used to examine gene expression of females differing in their reproductive status with the aim of identifying genes influenced by mating. However, since only virgin and single mated females were compared, transcriptional changes associated with reproduction (under natural selection) and the effects of male-induced harm (under sexually antagonistic selection) cannot be disentangled. We partitioned these fundamentally different effects by instead examining the expression profiles of virgin, single mated and double mated females. We found substantial effects relating to reproduction and further effects that are only attributable to a second mating. Immune response genes dominate this male-induced harm effect indicating that the cost of mating may be due partly to this system's activation. We propose that both sexually antagonistic and natural selection have been important in the evolution of the innate immunity genes, thereby contributing to the sexual dimorphismand rapid evolution at these loci. Keywords: Female response to mating
Project description:The female’s reproductive tract is exposed directly to the male’s ejaculate, making it a hotspot for mating-induced responses shortly after mating. In Drosophila melanogaster, changes in the reproductive tract are essential to optimize fertilization. To detect the earliest gene regulatory events that underlie these changes, we measured transcript abundances using RNA-seq and microRNA-seq of reproductive tracts of unmated females and females collected within 10-15 minutes after the end of mating, either to a wildtype male or to a male with defective BMP signaling in secondary cells of the accessory gland, which influences the composition of the male’s ejaculate. We observed transcript abundance changes for genes with roles in tissue morphogenesis, wound healing, the immune response and metabolism. Strikingly, predicted targets of microRNAs that respond to mating are enriched for overlapping functions, suggesting that mating-induced changes are in part regulated by microRNAs. Most of the differentially expressed RNAs are upregulated in response to mating, while most of the differentially expressed microRNAs are downregulated. This pattern suggests a response of activation and de-repression of gene programs that switch the reproductive tract to a “mated” state, rather than a repression of virgin-specific programs. Male genotype did not influence transcript levels, indicating that the earliest transcriptomic responses in the reproductive tract are not dependent on ejaculate components that require BMP signaling in secondary cells. Our results shed light on the molecular changes that accompany very early responses to mating and present candidate genes and microRNAs that can be further examined for their participation in alterations of the reproductive tract microenvironment in response to signals from the male.
Project description:By combining an experimental evolution approach with genomic techniques, we investigated the effects of seminal fluid on female gene expression. In our study, we experimentally manipulated the mating system in replicate populations of D. melanogaster, by removing post-copulatory sexual selection, with the aim of testing differences in short term post-mating reaction of females evolved under different mating strategies. We show that monogamous females suffer decreased fecundity, regardless of the type of male they were mated with, and that their post-mating gene expression profiles differ significantly from promiscuous females, involving 1141 transcripts (9% of the genes tested). These transcripts are active in several tissues, mainly ovaries, neural tissues, midgut and spermathecae, and are involved in metabolic processes, reproduction and signaling pathways. Our results provide a list of candidate genes responsible for the decrease in female fecundity in the absence of post-copulatory sexual selection, and demonstrate how the female post-mating response can evolve under different mating systems over relatively short time frames.
Project description:Temporal gene expression changes in head tissues from mated females was determined at four time points post-mating, from 0-2 hours out to 72 hours. Each time point assayed post-mating showed a unique post-mating gene expression response, with 48 hours post-mating having the largest number of genes with expression changes. At most time points, a marked change in expression of genes expressed in the head fat body and encode products that function in metabolism was observed. Additionally, gene expression was analyzed at 24 hours post-mating in brain tissues, identifying the repressed expression of several genes encoding ion channels. All microarrays were dual channel with direct comparisons of mated females versus virgin females. For each experiment, four independent biological samples were analyzed using a dye-swap design. Samples consisted of adult heads or dissected CNS collected either at 0-2, 24, 48, or 72 hours post-mating.