Project description:Optimize SNP genotyping probes and demonstrate a new P. falciparum microarray platform that includes CGH and resequencing probes on the same chip 3D7 common reference; lab samples: HB3, Dd2, SC05, 7C126; field patient samples: M1176, M1069, M1094, M1321, M1064, M1111
Project description:We used a high-density tiling array to estimate genetic recombination rate among 32 independent recombinant progeny of a P. falciparum genetic cross (7G8 × GB4). We detected 3184 segregating multi-probe single-feature polymorphisms (mSFPs) and 638 recombination events (496 excluding those from subtelomeric regions). These data, in combination with results from 254 previously reported microsatellites, enabled us to construct a high-resolution genetic map. Comparing genetic and physical maps, we obtained an overall recombination rate of 9.6 kb/cM (12.8 kb/cM excluding subtelomeric regions) and identified 54 hotspots, some of which occurred in genes encoding surface antigens or proteins with repetitive motifs that might play a role in genetic recombination in the parasite. Motifs enriched in hotspots were also identified. In agreement with results from a previous cross (HB3 ´ Dd2), there was positive correlation between sizes of individual chromosomes and their recombination events. These results show that the P. falciparum genome is highly recombinogenic, providing an important genetic basis for parasite survival under various selection pressures. GC-rich repetitive motifs identified in the hotspot sequences may play a role in the high recombination frequency observed.
Project description:The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the role of transcriptional variation as a source of stain-specific diversity in the most deadly malaria species and to find genetic loci that dictate variations in gene expression, we examined genome-wide expression level polymorphisms (ELPs) in a genetic cross between phenotypically distinct parasite clones. Significant variation in gene expression is observed through direct co-hybridizations of RNA from different P. falciparum clones. Nearly 18% of genes were regulated by a significant eQTL. The genetic determinants of most of these ELPs resided in hotspots that are physically distant from their targets. The most prominent regulatory locus, influencing 269 transcripts, coincided with a Chromosome 5 amplification event carrying the drug resistance gene, pfmdr1, and 13 other genes. Drug selection pressure in the Dd2 parental clone lineage led not only to a copy number change in the pfmdr1 gene but also to increased copies of putative neighboring regulatory factors that, in turn, broadly influence the transcriptional network. Previously unrecognized transcriptional variation, controlled by polymorphic regulatory genes and possibly master regulators within large copy number variants, contributes to sweeping phenotypic evolution in drug-resistant malaria parasites. Keywords: Segregation patterns of gene expression levels. A total of 36 test parasite samples (Dd2, HB3, and progeny) from a single time point in the parasite life cycle (18 hours post RBC invasion) were co-hybridized to a common reference HB3 sample, each a single replicate.
Project description:We used a high-density tiling array to estimate genetic recombination rate among 32 independent recombinant progeny of a P. falciparum genetic cross (7G8 M-CM-^W GB4). We detected 3184 segregating multi-probe single-feature polymorphisms (mSFPs) and 638 recombination events (496 excluding those from subtelomeric regions). These data, in combination with results from 254 previously reported microsatellites, enabled us to construct a high-resolution genetic map. Comparing genetic and physical maps, we obtained an overall recombination rate of 9.6 kb/cM (12.8 kb/cM excluding subtelomeric regions) and identified 54 hotspots, some of which occurred in genes encoding surface antigens or proteins with repetitive motifs that might play a role in genetic recombination in the parasite. Motifs enriched in hotspots were also identified. In agreement with results from a previous cross (HB3 M-BM-4 Dd2), there was positive correlation between sizes of individual chromosomes and their recombination events. These results show that the P. falciparum genome is highly recombinogenic, providing an important genetic basis for parasite survival under various selection pressures. GC-rich repetitive motifs identified in the hotspot sequences may play a role in the high recombination frequency observed. Ten microgram of genomic DNA, extracted and purified from 3D7 (reference), thirty-two P. falciparum independent recombinant progeny of the 7G8 x GB4 cross, and the two parental lines (Hayton, 2008), were hybridized to the PFSANGER GenechipM-BM-. (Affymetrix, Inc., Santa Clara, CA, USA). The scanned image CEL files were first processed using the RMA method, then averaged and compared with reference genome 3D7, and lastly assigned either 7G8 or GB4 alleles based on similarities to the two parental lines. Total of 35 genomic DNA samples (biological replicates: 6 for 3D7, 4 for 7G8, 4 for GB4, and 2 for Pf_WE2). The supplementary file 'GSE25656_QuantNormData_Log2_AllSamples.txt' contains the RMA-normalized data for all of the samples. The supplementary files 'GSE25656_chr*' contain the parental allele assignment of each chromosome and include probe-level annotation.
Project description:The parasite strains HB3 and Dd2 were cloned via limiting dilution and then sub-cloned. The uncloned parental line, 4 clones and 4 sub-clones were thawed in two different culture batches using different media lots and RBC donors but were otherwise maintained in identical standard culture conditions and synchronized by 3 rounds of sorbitol synchronization. Total RNA samples were collected at 24 hours post invasion (hpi).