Project description:Phloem localization of plant viruses is advantageous for acquisition by sap-sucking vectors but hampers host-virus protein interaction studies. In this study, Potato leafroll virus (PLRV)-host protein complexes were isolated from systemically infected potato, a natural host of the virus. Comparing two different co-immunoprecipitation support matrices coupled to mass spectrometry, we identified 44 potato proteins and one viral protein (P1) specifically associated with virus isolated from infected phloem. An additional 142 proteins interact in complex with virus at varying degrees of confidence. Greater than 80% of these proteins were previously found to form high confidence interactions with PLRV isolated from the model host Nicotiana benthamiana. Bioinformatics revealed that these proteins are enriched for functions related to plasmodesmata, organelle membrane transport, translation and mRNA processing. Our results show that model system proteomics experiments are extremely valuable for understanding protein interactions regulating infection in recalcitrant pathogens such as phloem-limited viruses.
Project description:Potato (Solanum tuberosum L.), as an important food crop on the Qinghai-Tibet Plateau, is prone to low temperature and frost damage during the seedling stage, causing economic losses for farmers. In this study, transcriptome analyses were conducted on the leaves of Atlantic, KY130 and KY140 potato varieties following exposure to cold stress (CS). The genes StPAL(Soltu.Atl.09_2G005110) and StGAD(Soltu.Atl.11_3G000340), suggesting their involvement in the regulation of cold resistance in potato. “Flavonoid-related metabolism,” “lipid metabolism,” “amino acid metabolism,” “carbohydrate metabolism,” “nucleotide metabolism,” and “energy metabolism” might play an important role in the cold resistance of potato. Our results provided novel insights into the molecular mechanisms underlying cold resistance in potato.