Project description:Streptococcus agalactiae (Group B Streptococcus, GBS) can colonize the human vaginal tract leading to both superficial and serious infections in adults and neonates. To study bacterial colonization of the reproductive tract in a mammalian system, we employed a murine vaginal carriage model. Using RNASeq, the transcriptome of GBS growing in vivo during vaginal carriage was determined. Over one-quarter of the genes in GBS were found to be differentially regulated during in vivo colonization as compared to laboratory cultures. A two-component system (TCS) homologous to the staphylococcal virulence regulator SaeRS was identified as being up-regulated in vivo. One of the SaeRS targets, pbsP, a proposed GBS vaccine candidate, was shown to be important for colonization of the vaginal tract. A component of vaginal lavage fluid acted as a signal to turn on pbsP expression via SaeRS. These data demonstrate the ability to quantify RNA expression directly from the murine vaginal tract and identify novel genes involved in vaginal colonization by GBS. They also provide more information about the regulation of an important virulence and colonization factor of GBS, pbsP, by the TCS SaeRS.
Project description:Streptococcus pyogenes (Group A Strep, GAS) is a serious human pathogen with the ability to colonize mucosal surfaces such as the nasopharynx and vaginal tract, often leading to infections such as pharyngitis and vulvovaginitis. We present genome-wide RNASeq data showing the transcriptomic changes GAS undergoes during vaginal colonization. These data reveal that the regulon controlled by MtsR, a master metal regulator, is activated during vaginal colonization. This regulon includes two genes highly expressed during vaginal colonization, hupYZ. Here we show that HupY binds heme in vitro, affects intracellular concentrations of iron, and is essential for proper growth of GAS using hemoglobin or serum as the sole iron source. HupY is also important for murine vaginal colonization of both GAS and the related vaginal colonizer and pathogen, Streptococcus agalactiae (Group B Strep, GBS). These data provide essential information on the link between metal regulation and mucosal colonization in both GAS and GBS.
Project description:Staphylococcus aureus is a common human and animal opportunistic pathogen. In humans nasal carriage of S. aureus is a risk factor for various infections. Methicillin-resistant S. aureus ST398 is highly prevalent in pigs in Europe and North America. The mechanism of successful pig colonization by MRSA ST398 is poorly understood. Previously, we developed a nasal colonization model of porcine nasal mucosa explants to identify molecular traits involved in nasal MRSA colonization of pigs. Here, we report the analysis of the transcriptome of MRSA ST398 strain S0462 during colonization on the explant epithelium. Major regulated genes were encoding metabolic processes and regulation of these genes represents metabolic adaptation to nasal mucosa explants. Colonization was not accompanied by significant changes in transcripts of main virulence associated genes or known human colonization factors. Here, we document regulation of two genes which have potential influence on S. aureus colonization; cysteine extracellular proteinase (scpA) and von Willebrand factor-binding protein (vwbp, located on SaPIbov5). Colonization with isogenic-deletion strains (Î?vwbp and Î?scpA) did not alter the nasal S. aureus colonization compared to wild type. Our results suggest that nasal colonization with MRSA ST398 is a complex event that is accompanied with changes in bacterial gene expression regulation and metabolic adaptation. Number of the samples: 5 (timepoint 0 min, 30 min, 60 min, 90 min and 180 min) in 4 replicates. 4 control samples
Project description:Staphylococcus aureus is a common human and animal opportunistic pathogen. In humans nasal carriage of S. aureus is a risk factor for various infections. Methicillin-resistant S. aureus ST398 is highly prevalent in pigs in Europe and North America. The mechanism of successful pig colonization by MRSA ST398 is poorly understood. Previously, we developed a nasal colonization model of porcine nasal mucosa explants to identify molecular traits involved in nasal MRSA colonization of pigs. Here, we report the analysis of the transcriptome of MRSA ST398 strain S0462 during colonization on the explant epithelium. Major regulated genes were encoding metabolic processes and regulation of these genes represents metabolic adaptation to nasal mucosa explants. Colonization was not accompanied by significant changes in transcripts of main virulence associated genes or known human colonization factors. Here, we document regulation of two genes which have potential influence on S. aureus colonization; cysteine extracellular proteinase (scpA) and von Willebrand factor-binding protein (vwbp, located on SaPIbov5). Colonization with isogenic-deletion strains (Δvwbp and ΔscpA) did not alter the nasal S. aureus colonization compared to wild type. Our results suggest that nasal colonization with MRSA ST398 is a complex event that is accompanied with changes in bacterial gene expression regulation and metabolic adaptation.
Project description:The differential gene expressions of rat mucosa colonized with single or multi-species of MRSA or PA were studied using RNA-sequencing of total transcriptome. In multi-species in-vitro biofilms PA partially inhibited SA growth. However, no significant inhibition of MRSA was detected during in-vivo colonization of multi-species in rat bullae. A total of 1797 genes were significantly (p < 0.05) differentially expressed in MRSA or PA or MRSA+PA colonized rat middle ear mucosa with respect to the control. The poly-microbial colonization of MRSA and PA induced the differential expression of a significant number of genes that are involved in immune response, inflammation, signaling, development, and defense; these were not expressed with single species colonization by either MRSA or PA. Genes involved in defense, immune response, inflammatory response, and developmental process were exclusively up-regulated, and genes that are involved in nervous system signaling, development and transmission, regulation of cell growth and development, anatomical and system development, and cell differentiation were down-regulated after multi-species inoculation.
2018-01-15 | GSE94722 | GEO
Project description:GBS TnSeq during vaginal colonization
| PRJNA820592 | ENA
Project description:GBS RNASeq during vaginal colonization
Project description:Tn-Seq was used to identify S. gordonii genes that confer fitness during cooperative growth with P. gingivalis in a murine abscess model.
Project description:Tn-Seq was used to identify P. gingivalis genes that confer fitness during cooperative growth with S. gordonii or F. nucleatum in a murine abscess model.
Project description:An updated representation of S. meliloti metabolism that was manually-curated and encompasses information from 240 literature sources, which includes transposon-sequencing (Tn-seq) data and Phenotype MicroArray data for wild-type and mutant strains.