Project description:RIP-chip analysis to identify mRNA preferentially associated with Msi1 protein. RIP-Chip experiments were performed on two biologically replicated samples transfected with the BAP-Msi1 construct and a control sample from cells transfected with the BAP-Control construct. A total of 8 microarrays were carried on using technical replicates of BAP-Msi1 vs. BAP-Control for each dye orientation.
Project description:Musashi1 (Msi1) is a highly conserved RNA binding protein that is required during the development of the nervous system. Msi1 has a role in neural stem cells, controlling the balance between self-renewal and differentiation. Msi1 has also been implicated in cancer, being highly expressed in multiple tumor types. In this study, we analyzed Msi1 expression in a large cohort of medulloblastoma samples and showed that Msi1 is highly expressed in tumor tissue compared to normal cerebellum and that high Msi1 expression is associated with a poor prognosis. Using a nude mouse xenograft model, we demonstrate that Msi1 is important for tumor growth. We then used RIP-chip (ribonucleoprotein immunoprecipitation followed by microarray analysis) to identify mRNA targets of Msi1 in medulloblastoma. In conclusion, our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target. RIP-Chip analysis to identify mRNA preferentially associated with Msi1 protein. RIP-Chip experiments were performed on two biologically replicated samples. A total of 8 microarrays were carried on using technical replicates of Msi1 antibody vs. prebleed serum for each dye orientation. We prepared two biological replicates for two different arrays. Each array consisted of 4 microarrays with 2 replicates for each dye orientation.
Project description:mRNA-seq and ribosome profiling of neural stem cells overexpressing or knocked out for Musashi RNA-binding proteins Study of the global effects of Musashi (Msi) proteins on the transcriptome of embryonic neural stem cells. Neural stem cells were derived from brains of E12.5 or E13.5 embryos engineered to have inducible Msi1 or Msi2 genes, or from embryos with double floxed alleles of Msi1 and Msi2 carrying a Tamoxifen-induclble Cre (CreER). The overexpression mice were made using the Flp-in system (OpenBioSystems), where a cDNA of interest (in this case Msi1 or Msi2) is knocked into the Collagen (Col1A1) locus. The expression of the cDNA of interest is driven by m2rTTA that is knocked into the Rosa26 locus (R26). KH2 describes a strain containing the R26-m2rTTA but lacking Msi1 or Msi2 cDNA. MSI1 describes a strain containing R26-m2rTTA and Msi1 cDNA in Col1A1. MSI2 describes a strain containing R26-m2rTTA and Msi2 cDNA in Col1A1. C1 describes a strain lacking the CreER allele but containing double floxed alleles of Msi1/Msi2 (used as Tamoxifen control). C4 describes a strain carrying the CreER allele and double floxed alleles of Msi1/Msi2.
Project description:Transcripts bound to Musashi-1 (MSI1) are explored in Group 3 medulloblastoma (G3 MB) and neural stem cells harvested from the cerebellar portion of a embryonal brain
Project description:Musashi1 (Msi1) is a highly conserved RNA binding protein that is required during the development of the nervous system. Msi1 has a role in neural stem cells, controlling the balance between self-renewal and differentiation. Msi1 has also been implicated in cancer, being highly expressed in multiple tumor types. In this study, we analyzed Msi1 expression in a large cohort of medulloblastoma samples and showed that Msi1 is highly expressed in tumor tissue compared to normal cerebellum and that high Msi1 expression is associated with a poor prognosis. Using a nude mouse xenograft model, we demonstrate that Msi1 is important for tumor growth. We then used RIP-chip (ribonucleoprotein immunoprecipitation followed by microarray analysis) to identify mRNA targets of Msi1 in medulloblastoma. In conclusion, our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target.