Project description:Musashi1 (Msi1) is a highly conserved RNA binding protein that is required during the development of the nervous system. Msi1 has a role in neural stem cells, controlling the balance between self-renewal and differentiation. Msi1 has also been implicated in cancer, being highly expressed in multiple tumor types. In this study, we analyzed Msi1 expression in a large cohort of medulloblastoma samples and showed that Msi1 is highly expressed in tumor tissue compared to normal cerebellum and that high Msi1 expression is associated with a poor prognosis. Using a nude mouse xenograft model, we demonstrate that Msi1 is important for tumor growth. We then used RIP-chip (ribonucleoprotein immunoprecipitation followed by microarray analysis) to identify mRNA targets of Msi1 in medulloblastoma. In conclusion, our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target. RIP-Chip analysis to identify mRNA preferentially associated with Msi1 protein. RIP-Chip experiments were performed on two biologically replicated samples. A total of 8 microarrays were carried on using technical replicates of Msi1 antibody vs. prebleed serum for each dye orientation. We prepared two biological replicates for two different arrays. Each array consisted of 4 microarrays with 2 replicates for each dye orientation.
Project description:Transcripts bound to Musashi-1 (MSI1) are explored in Group 3 medulloblastoma (G3 MB) and neural stem cells harvested from the cerebellar portion of a embryonal brain
Project description:Musashi1 (Msi1) is a highly conserved RNA binding protein that is required during the development of the nervous system. Msi1 has a role in neural stem cells, controlling the balance between self-renewal and differentiation. Msi1 has also been implicated in cancer, being highly expressed in multiple tumor types. In this study, we analyzed Msi1 expression in a large cohort of medulloblastoma samples and showed that Msi1 is highly expressed in tumor tissue compared to normal cerebellum and that high Msi1 expression is associated with a poor prognosis. Using a nude mouse xenograft model, we demonstrate that Msi1 is important for tumor growth. We then used RIP-chip (ribonucleoprotein immunoprecipitation followed by microarray analysis) to identify mRNA targets of Msi1 in medulloblastoma. In conclusion, our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target.
Project description:To understand the function of MSI1 in pluripotent stem cells, RNA-seq assays were performed on mouse embryonic stem cells R1, MSI1 knockout cell line R1-C5, human embryonic stem cells H9, RRM knockout cell line H9-C8, MSI1 full-length overexpression cell line H9-MSI1OE, MSI1C variant overexpression cell line H9-MSI1 (138-362) OE , H9-MSI1(272-362)OE. RNA bound by MSI1 in R1 and H9, and MSI1C variants MSI1 (138-362), MSI1(272-362) were detected using RIP-seq.
Project description:To study the effect of constitutive REST expression on DAOY, UW228 and UW426 cells, we generated low and high-REST (LR/HR) isogenic pairs of the three human medulloblastoma (MB) cell lines and performed RNA-Seq analysis. We also analyzed the expression profiles of D283 cells (Group3/4 MB cell line) with DAOY, UW228 and UW26 (SHH MB cell line ) to show the subgroup specific expression profiles.