Project description:Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on guilt-by-association relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.
Project description:Plants remember what they have experienced and are thereby able to confront repeated stresses more promptly and strongly. A subset of genes showed increased transcript levels under drought stress conditions, followed by a return to basal levels during recovery (watered) states, and then displayed elevated levels again under subsequent drought conditions. To screen for a set of drought stress memory genes in soybean (Glycine max L. cv. Daepoong), we designed a 180K DNA chip comprising 60-bp probes synthesized in situ to examine 55,588 loci. Through microarray analysis using the DNA chip, we identified 2,165 and 2,385 genes with more than 4-fold increases or decreases in transcript levels, respectively, under initial (first) drought stress conditions, when compared with the non-treated control. The transcript levels of the genes returned to basal levels during recovery (watered) states, then 677 and 987 genes displayed more than 16-fold elevated or reduced levels, respectively, under subsequent (second) drought conditions, when compared to the non-treated control. Gene Ontology analysis classified the drought stress memory genes into several functional categories, including those involved in trehalose biosynthesis and drought tolerance responses. We selected a number of drought stress memory genes encoding various transcription factors, protein phosphatase 2Cs, and late embryogenesis abundant proteins, and confirmed the microarray data by quantitative reverse-transcription real-time PCR. Upon repeated watering and subsequent (third) drought treatment, the elevated levels of the drought stress memory gene transcripts were propagated into newly developed second leaves, although at reduced levels when compared to the second drought treatment on the first leaves.
Project description:Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants. SUBMITTER_CITATION: Biology 2013, 2(4), 1311-1337; doi:10.3390/biology2041311 Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos Delasa Aghamirzaie, Mahdi Nabiyouni, Yihui Fang, Curtis Klumas, Lenwood S. Heath, Ruth Grene and Eva Collakova SUBMITTER_CITATION: Metabolites 2013, 3(2), 347-372; doi:10.3390/metabo3020347 Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos Eva Collakova, Delasa Aghamirzaie, Yihui Fang, Curtis Klumas, Farzaneh Tabataba, Akshay Kakumanu, Elijah Myers, Lenwood S. Heath and Ruth Grene Total mRNA profiles of 10 time course samples of Soybean developing embryos with three replicates per sample were generated by deep sequencing, using Illumina HiSeq 2000
Project description:Comparative expression analysis of roots of two soybean cultivars with contrasting drought-tolerant phenotype under well-watered and dehydration conditions.