Project description:This study was designed to provide a genome-wide analysis of the effects of luteinizing hormone (LH) ablation/replacement versus steroid ablation/replacement on gene expression in the developed corpus luteum (CL) in primates during the menstrual cycle. Naturally cycling, female rhesus monkeys were left untreated (Control; n = 4) or received one of the following treatments for three days beginning on Day 9 of the luteal phase: daily injection of the gonadotropin-releasing hormone (GnRH) antagonist (Antide; n = 5), Antide + recombinant human LH (A+LH; n = 4), Antide + LH + the 3b-HSD antagonist Trilostane (A+LH+TRL; n = 4), and Antide + LH + TRL + progesterone replacement with a synthetic progestin R5020 (A+LH+TRL+ R5020; n = 5). On Day 12 of the luteal phase, CL were removed and samples of RNA from individual CL were fluorescently labeled and hybridized to Affymetrix™ rhesus macaque total genome microarrays. The greatest number of altered transcripts was associated with the ablation/replacement of LH, while ablation/replacement of progestin affected fewer transcripts. Replacement of LH during Antide treatment restored expression of most transcripts to control levels. Real-time PCR validation of a subset of transcripts revealed that most expression patterns were similar between microarray and real-time PCR. Analysis of protein levels were subsequently determined for 2 of the transcripts differentially expressed by real-time PCR. This is the first genome-wide analysis of LH and steroid regulation of gene transcription in the developed primate CL. Further analysis of novel transcripts identified in this data set can clarify the relative role for LH and steroids in CL maintenance and luteolysis. Keywords: LH/steroid ablation/replacement in primate mid-late luteal phase corpora lutea 22 samples from Rhesus Macaque corpus luteum hybridized to individual Rhesus Affymentrix Gene Chip Arrays. 5 treatment groups, with at least 4 replicates per treatment.
Project description:This study was designed to provide a genome-wide analysis of the effects of luteinizing hormone (LH) ablation/replacement versus steroid ablation/replacement on gene expression in the developed corpus luteum (CL) in primates during the menstrual cycle. Naturally cycling, female rhesus monkeys were left untreated (Control; n = 4) or received one of the following treatments for three days beginning on Day 9 of the luteal phase: daily injection of the gonadotropin-releasing hormone (GnRH) antagonist (Antide; n = 5), Antide + recombinant human LH (A+LH; n = 4), Antide + LH + the 3b-HSD antagonist Trilostane (A+LH+TRL; n = 4), and Antide + LH + TRL + progesterone replacement with a synthetic progestin R5020 (A+LH+TRL+ R5020; n = 5). On Day 12 of the luteal phase, CL were removed and samples of RNA from individual CL were fluorescently labeled and hybridized to Affymetrix™ rhesus macaque total genome microarrays. The greatest number of altered transcripts was associated with the ablation/replacement of LH, while ablation/replacement of progestin affected fewer transcripts. Replacement of LH during Antide treatment restored expression of most transcripts to control levels. Real-time PCR validation of a subset of transcripts revealed that most expression patterns were similar between microarray and real-time PCR. Analysis of protein levels were subsequently determined for 2 of the transcripts differentially expressed by real-time PCR. This is the first genome-wide analysis of LH and steroid regulation of gene transcription in the developed primate CL. Further analysis of novel transcripts identified in this data set can clarify the relative role for LH and steroids in CL maintenance and luteolysis. Keywords: LH/steroid ablation/replacement in primate mid-late luteal phase corpora lutea
Project description:Effects of steroid ablation and progestin replacement on the transcriptome of the primate corpus luteum during simulated early pregnancy.
Project description:Because mice with Pgr-Cre mediated double ablation of Insr and Igf1r are infertile and possess trapped oocytes in their corpora lutea, we performed RNA-seq to identify candidate pathways that contribute to ovulation failure.
Project description:A large body of evidence suggests that the development and maintenance of corpus luteum (CL) in primates requires the action of LH. Earlier, using CET-induced luteolysis model, we demonstrated changes in luteal transcriptome suggesting nuclear actions of LH in the primate CL. To further demonstrate the role of LH in maintenance of primate CL, replacement studies were carried out and it was observed that administration of a single injection of rhLH was sufficient to restore the progesterone to pre-CET treatment levels and prevent the CET-induced luteolysis. To elucidate the molecular mechanisms underlying the rescue of CL function, we used LH-replacement model to study immediate early changes in gene expression at a global level (Affymetrix oligonucleotide microarray) following LH replacement in CET-treated monkeys and to evaluate if the changes in gene expression mediated by LH-withdrawal can be reversed by LH replacement. Results demonstrated up-and down-regulation of various genes following LH replacement and suggested that LH-withdrawal induced changes in gene expression are reversible at least for some genes. Keywords: CL, CET, rhLH