Project description:This study aimed to identify changes in Arabidopsis thaliana microRNAs during the early stages of infection by the fungal pathogen Fusarium graminearum. This study is relevant to Agriculture, as F. graminearum is a major pathogen of cereal crops; microRNAs provide a rapid and early response by the plant to trigger changes in expression of genes involved in limiting the infection and immunity.
Project description:Role of fungal cellulases upon Fusarium oxysporum infection. We obtained Fusarium oxysporum mutants, which cannot degrade cellulose capacity to observe their virulence. Cellulose degradation is not mandatory for Fusarium oxysporum to reach the plant vasculature system.
Project description:Pathogen infection triggers transcriptional reprogramming in host plants, however we still know little about the dynamics of the pathogen-induced defense transcriptome. The goal of this study was to investigate the dynamic reprogramming of the defense transcriptome in response to Fusarium oxysporum infection in Arabidopsis using RNA-seq technology and to provide a comprehensive analysis of genes underlying the innate immune response against the fungal pathogen. Our results suggest that the Arabidopsis transcriptome is reprogrammed to co-ordinately express multiple positive and negative regulators following pathogen infection to modulate defense gene expression and disease resistance. Our study identified a number of novel genes responsive to pathogen infection and provided a rich source of pathogen responsive genes for further functional characterization. Four samples (M1DPI, M6DPI, F1DPI and F6DPI; M=mock treated; F=Fusarium oxysporum infected; DPI=day post inoculation) were sequenced to identify pathogen responsive genes in each time point. Each sample was sequenced once, i.e. without biological replicate.
Project description:Across Canada, infections associated with Fusarium have a devastating impact on the agricultural sector. For example, Fusarium head blight (FHB) costs the Canadian grain industry over $1.5 billion annually in diminished export and domestic sales. For Ontario’s most productive and lucrative crops infection by Fusarium spp., leads to losses of over $200 million annually through yield reduction in corn (i.e., stalk and ear rot), cereals (i.e., FHB), and soybeans (i.e., root rot and sudden death syndrome). Additionally, mycotoxin production by Fusarium spp. (e.g., deoxynivalenol [DON]) has severe consequences for the livestock and poultry industries through consumption of contaminated feed, as well as concerns for human health upon consumption of contaminated processed grains. Current management strategies against FHB rely on fungicide application at heading, which reduces infection but does not limit the accumulation of dangerous mycotoxins within the grains. Moreover, such fungicide applications substantially increase the economic cost to growers, raise public concerns over chemical exposure, and contribute to the development of antimicrobial resistance. The critical role of Fusarium fungal pathogens and their toxins in the health of crops, livestock, and humans underscores the need for innovative strategies to better understand mechanisms of disease and identify novel management strategies to limit the incidence of infection and to critically, reduce the accumulation of mycotoxins within infected grains
Project description:This experiment analyzes the changes in expression of twelve days old Arabidopsis roots at ten hours post inoculation upon cyst nematode H. schachtii infection.
Project description:Pathogen infection triggers transcriptional reprogramming in host plants, however we still know little about the dynamics of the pathogen-induced defense transcriptome. The goal of this study was to investigate the dynamic reprogramming of the defense transcriptome in response to Fusarium oxysporum infection in Arabidopsis using RNA-seq technology and to provide a comprehensive analysis of genes underlying the innate immune response against the fungal pathogen. Our results suggest that the Arabidopsis transcriptome is reprogrammed to co-ordinately express multiple positive and negative regulators following pathogen infection to modulate defense gene expression and disease resistance. Our study identified a number of novel genes responsive to pathogen infection and provided a rich source of pathogen responsive genes for further functional characterization.
2012-06-01 | GSE34241 | GEO
Project description:Changes of H3K27ac profiles upon BmNPV infection