Project description:Integrated metabolome and transcriptome analyses reveal the phytochemical pathways underlying young red leaf forms in Hopea hainanensis
Project description:Arabidopsis plants transfer information from the leaf tip to the petiole base to induce adaptive upward leaf movement upon neighbour detection through Far-Red light enrichment in the leaf tip. To determine how a distally derived signal can specifically regulate growth in the abaxial petiole we analysed the transcriptome in the leaf tip and abaxial-adaxially split petiole sections during the first hours of far-red enrichment.
2022-12-20 | GSE218944 | GEO
Project description:Integrative metabolome and transcriptome analysis reveal the molecular mechanism of yellow-red bicolor formation in Kalanchoe blossfeldiana petals
| PRJNA988950 | ENA
Project description:Transcriptome and metabolomic analysis to reveal the browning spot formation of Huangguan pear
Project description:gene expression profiling in different zones along the gradient of the growing maize leaf balde aover a time course of dirunal cycle and carbon starvation by extension of the night Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night, and in non-photosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades a defined developmental gradient facilitates analyses in the cell division, elongation and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn and 6, 14 and 24 hours into an extended night, and tracked whole leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose recovers partially between 14 and 24 h into the extended night in the growth zones but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in sucrose. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night and then partially recover indicating that growth processes are determined by local carbon status. The level of sucrose-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:sucrose ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones. 3 repliucates per time point and leaf region, each pooled form 5 indiviual plants
Project description:The metabolic response of maize source leaves to low nitrogen supply was analyzed in maize seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under controlled growth chamber conditions and supplied with either sufficient (15mM) or limiting (0.15mM) nitrate supply. Leaf lamina material was harvested at day 20 and day 30 after germination with the fifth and sixth leaf representing the main source leaf respectively. Four replicates were collecetd from individual plants for each combination of genotype, growth stage and nitrogen treatment. The leaf material was frozen, homogenised and aliquoted for transcriptome and metabolome analysis. The molecular data was further supplemented by phenotypic characterisation of the maize seedlings under investigation. Limited availability of nitrogen caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the nitrogen stress but showed strong genotype and age dependent patterns. Nitrogen starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation related transcripts on the other hand were not influenced. Carbon assimilation related transcripts were characterized by high transcriptional coordination and general down-regulation under low nitrogen conditions. Nitrogen deprivation caused a slight accumulation of starch, but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and by strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions. Maize inbred lines A188 and B73 were cultivated in pots containing nutrient poor peat soil under the controlled conditions of a growth chamber. The plants were fertilized with modified Hoagland solutions containing either 15mM (high N) or 0.15mM nitrate (low N). Source leaf lamina were harvested at day 20 and day 30 after start of germination for parallel analysis of transcriptome and metabolome profiles. The molecular data is further supplemented by phenotypic characterization of the maize seedlings under investigation.
Project description:Although Cochliobolus miyabeanus is an important fungal leaf pathogen on rice plants worldwide, it is largely neglected by molecular plant phytopathologists. To shed new light on the molecular and genetic basis of the rice – C. miyabeanus interaction, we compared the transcriptome of rice leaves 12h post inoculation to uninfected leaves. Even though usable sources of resistance against brown spot disease caused by C. miyabeanus are scarce, silicon application emerges as a sustainable protection strategy. Many articles report the beneficial effect of silicon on brown spot resistance. however the underlying mechanisms remain largely unclear. The influence of silicon application on the transcriptome of healthy and infected rice leaves 12hpi was compared as well in an attempt to disentangle the modulation of silicon-induced brown spot resistance.
Project description:Our results revealed that the initial flowering stage plays a critical role in the color change of MN. Metabolome analysis demonstrated that cyanidin was the primary anthocyanin in SZT and MN’s red region, while its content was low in TZM and MN’s white region. According to the transcriptome analysis, the anthocyanins biosynthesis pathway was reconstructed in Yunnan Camellia, and the low expression of CHS was detected in TZM and MN’s white region, while ANR maintained a high expression level, which may lead to the low content of cyanidin in them. Transcription factors MYBs, bHLH, and bZIP may play a key role in regulating anthocyanin-structural genes. The co-expression analysis showed that the meristem tissue may play a crucial role in the formation of the mixed white-red color in MN.