Project description:Microcystin-LR (MC-LR), the most toxic member of microcystin family, inhibits protein phosphatase PP2A, triggers oxidative stress and induces hepatotoxicity. Gene expression profiling of MC-LR treated larvae using DNA microarray analysis revealed effects in the retinal visual cycle and pigmentation synthesis pathways that have not been previously associated with MC-LR. Liver-related genes were also differentially expressed. The microarray data were confirmed by quantitative real-time PCR. Our findings provide new evidence that microcystin-LR exposure of zebrafish larvae modulates the retinal visual cycle and pigmentation synthesis pathways and ultimately alter larval zebrafish behavior
Project description:Cyanobacteria produce various cyanotoxins, which can cause severe effects to other organisms. Microcystins, one group of such toxins, primarily produced by species of Microcystis, are strong hepatotoxins and inhibit potently protein phosphatases 1 and 2A. Microcystin is the most studied cyanotoxin, however, others are not investigated. Eutrophication of water bodies promotes the occurrence of toxic algal blooms and since a anthropogenic caused increase in eutrophication events can be observed, it is becoming increasingly important to study the consequences and to increase the knowledge on toxins associated with algal blooms. Recently a new cyanobacteria toxin from a Microcystis strain, CP1020, was described. CP1020 belongs to the class of cyanopeptolins and its toxicity was shown to be comparable to that of microcystin (Gademann et al., 2009). It is a strong protease inhibitor inhibiting trypsin in the picomolar range (IC50 = 670 pM) and effects survival of the freshwater crustacean Thamnocephalus platyurus (LC50) 8.8 M-NM-<M (Gademann et al., 2009). Nothing is known, however, about the toxicity of CP1020 to fish. Furthermore, no information is available on the toxic modes of action, in addition to the proteinase activity. Consequently our study has the aim to elucidate the modes of action of CP1020 on zebrafish eleuthero-embryos. By using a microarray technique, we will analyse alterations of global gene expression by CP1020 at two different concentrations. Thereby, we hope to elucidate the whole array of affected biological pathways to elucidate the mechanisms by which CP1020 affect fish. Gene expression in zebrafish eleuthero-embryos was measured after exposure for 96h to 100 ug/L and 1000 ug/L CP1020 or to the respective controls. A total of 12 arrays (Agilent 4 M-CM-^W 44 K Zebrafish microarray) were used, including four for the solvent control group, four for the 100 M-NM-<g/L and four for the 1000 M-NM-<g/L CP1020 dose group.
Project description:Cyanobacteria produce various cyanotoxins, which can cause severe effects to other organisms. Microcystins, one group of such toxins, primarily produced by species of Microcystis, are strong hepatotoxins and inhibit potently protein phosphatases 1 and 2A. Microcystin is the most studied cyanotoxin, however, others are not investigated. Eutrophication of water bodies promotes the occurrence of toxic algal blooms and since a anthropogenic caused increase in eutrophication events can be observed, it is becoming increasingly important to study the consequences and to increase the knowledge on toxins associated with algal blooms. Recently a new cyanobacteria toxin from a Microcystis strain, CP1020, was described. CP1020 belongs to the class of cyanopeptolins and its toxicity was shown to be comparable to that of microcystin (Gademann et al., 2009). It is a strong protease inhibitor inhibiting trypsin in the picomolar range (IC50 = 670 pM) and effects survival of the freshwater crustacean Thamnocephalus platyurus (LC50) 8.8 μM (Gademann et al., 2009). Nothing is known, however, about the toxicity of CP1020 to fish. Furthermore, no information is available on the toxic modes of action, in addition to the proteinase activity. Consequently our study has the aim to elucidate the modes of action of CP1020 on zebrafish eleuthero-embryos. By using a microarray technique, we will analyse alterations of global gene expression by CP1020 at two different concentrations. Thereby, we hope to elucidate the whole array of affected biological pathways to elucidate the mechanisms by which CP1020 affect fish.
Project description:This project aimed at identifying developmental stage specific transcript profiles for catecholaminergic neurons in embryos and early larvae of zebrafish (Danio rerio). Catecholaminergic neurons were labeled using transgenic zebrafish strains to drive expression of GFP. At stages 24, 36, 72 and 96 hrs post fertilization, embryos were dissociated and GFP expressing cells sorted by FACS. Isolated RNAs were processed using either polyA selection and libray generation or NanoCAGE. This is the first effort to determine stage specific mRNA profiles of catecholaminergic neurons in zebrafish.
Project description:Tritium is an ubiquist radionuclide which can be found in the environment due to natural and anthropogenic activities, particularly in aquatic ecosystems. In this context, tritium effects on aquatic species such as fish have to be characterized. HTO (tritiated water) effects were therefore investigated in zebrafish, Danio rerio, a common model in toxicology and ecotoxicology with a fully sequenced genome. Experiments were conducted on early life stages. Larvae were exposed to 0.4 and 4 mGy/h of HTO until 10 days post fertilization. Tritium internalization was quantified and effects were investigated using a proteomic analysis. The global analysis of the proteome was performed after protein extraction at 7 and 10 dpf on zebrafish eggs exposed from 3 hpf to 10 dpf.