Project description:Three new triterpene glycosides, pacificusosides A-C (1-3), and three previously known triterpene glycosides, cucumariosides C1 (4), C2 (5), and A10 (6), were isolated from the alcoholic extract of the Far Eastern starfish Solaster pacificus. The structures of 1-3 were elucidated by extensive NMR and ESIMS techniques and chemical transformations. Compound 1 has a novel, unique structure, containing an aldehyde group of side chains in its triterpene aglycon. This structural fragment has not previously been found in the sea cucumber triterpene glycosides or starfish steroidal glycosides. Probably, pacificusoside A (1) is a product of the metabolism of the glycoside obtained through dietary means from a sea cucumber in the starfish. Another two new triterpene glycosides (2, 3) have closely related characteristics to sea cucumber glycosides. The cytotoxicity of compounds 1-6 was tested against human embryonic kidney HEK 293 cells, colorectal carcinoma HT-29 cells, melanoma RPMI-7951 cells, and breast cancer MDA-MB-231 cells using MTS assay. Compounds 4-6 revealed the highest cytotoxic activity against the tested cell lines, while the other investigated compounds had moderate or slight cytotoxicity. The cytotoxic effects of 2-6 were reduced by cholesterol like the similar effects of the previously investigated individual triterpene glycosides. Compounds 3, 4, and 5 almost completely suppressed the colony formation of the HT-29, RPMI-7951, and MDA-MB-231 cells at a nontoxic concentration of 0.5 µM.
Project description:Six previously unknown triterpene glycosides, pacificusosides L-Q (1-6), and two previously known triterpene glycosides, cucumariosides B1 (7) and A5 (8), were isolated from an alcoholic extract of Pacific sun star, Solaster pacificus. The structures of 1-6 were determined using 1D and 2D NMR, ESIMS, and chemical modifications. Compound 1 is a rare type of triterpene glycoside with non-holostane aglycon, having a linear trisaccharide carbohydrate chain. Pacificusosides M-P (2-5) have new structures containing a Δ8(9)-3,16,18-trihydroxy tetracyclic triterpene moiety. This tetracyclic fragment in sea star or sea cucumber triterpene glycosides was described for the first time. All the compounds under study exhibit low or moderate cytotoxic activity against colorectal carcinoma HCT 116 cells, and breast cancer MDA-MB-231 cells were assessed by MTS assay. Compound 2 effectively suppresses the colony formation of cancer cells at a non-toxic concentration, using the soft-agar assay. A scratch assay has shown a significant anti-invasive potential of compound 2 against HCT 116 cells, but not against MDA-MB-231 cells.
Project description:Sea stars or starfish (class Asteroidea) and holothurians or sea cucumbers (class Holothuroidea), belonging to the phylum Echinodermata (echinoderms), are characterized by different sets of glycosidic metabolites: the steroid type in starfish and the triterpene type in holothurians. However, herein we report the isolation of eight new triterpene glycosides, pacificusosides D-K (1-3, 5-9) along with the known cucumarioside D (4), from the alcoholic extract of the Far Eastern starfish Solaster pacificus. The isolated new compounds are closely related to the metabolites of sea cucumbers, and their structures of 1-3 and 5-9 were determined by extensive NMR and ESIMS techniques. Compounds 2, 5, and 8 have a new type of tetrasaccharide chain with a terminal non-methylated monosaccharide unit. Compounds 3, 6, and 9 contain another new type of tetrasaccharide chain, having 6-O-SO3-Glc as one of the sugar units. The cytotoxic activity of 1-9 against non-cancerous mouse epidermal cells JB6 Cl41 and human melanoma cell lines SK-MEL-2, SK-MEL-28, and RPMI-7951 was determined by MTS assay. Compounds 1, 3, 4, 6, and 9 showed potent cytotoxicity against these cell lines, but the cancer selectivity (SI > 9) was observed only against the SK-MEL-2 cell line. Compounds 1, 3, 4, 6, and 9 at the non-toxic concentration of 0.1 μM significantly inhibited neoplastic cell transformation of JB6 Cl41 cells induced by chemical carcinogens (EGF, TPA) or ionizing radiation (X-rays and UVB). Moreover, compounds 1 and 4 at the non-toxic concentration of 0.1 µM possessed the highest inhibiting activity on colony formation among the investigated compounds and decreased the colonies number of SK-MEL-2 cells by 64% and 70%, respectively. Thus, triterpene glycosides 1 and 4 can be considered as prospective cancer-preventive and anticancer-compound leaders.