Project description:Sweet potato virus disease (SPVD) is one of the most devastating diseases affecting sweetpotato (Ipomoea batatas), an important food crop in developing countries. SPVD develops when sweetpotato plants are dually infected with sweet potato feathery mottle virus (SPFMV) and sweet potato chlorotic stunt virus (SPCSV). In the current study, global gene expression between SPVD affected plants and virus-tested control plants (VT) were compared in the susceptible ‘Beauregard’ and resistant ‘NASPOT 1’ (Nas) sweetpotato cultivars at 5, 9, 13 and 17 days post inoculation (DPI).
Project description:we performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of sweet potato challenged with Fob using Illumina Hiseq technology. A total of 89,944,188 clean reads were generated and were assembled into 101,988 unigenes with an average length of 666bp, 62,605(61.38%) of them were functional annotated in the non-redundant(nr) protein database from NCBI by using BLASTX with a cut-off E-value of 10-5, and COG,GO and KEGG annotations were examined for better understand their functions. Five DGE libraries were constructed from the sweet potato cultivar JS57 (high resistance) and XZH (high susceptible) challenged with pathogenic and Nonpathogenic Fob. The differentially expressed genes including up- and down-regulation in five libraries were identified and calculated based on comparisons of transcriptomes, showing differences in gene expression profiles among the samples. A set of differentially expressed genes involved disease response were identified, including 40 WRKY and seven NAC transcription factors, four resistance genes, 22 pathogenesis-related genes, and six genes involved in SA signal pathway. Our study is the first to provide the transcriptome sequence resource of sweet potato challenged with pathogenic and non-pathogenic Fob and demonstrate its digital expression profiling. We discovered a set of genes involved in disease resistance. These data provides comprehensive sequence resource of sweet potato for genetic and genomic studies and will accelerate the understanding of molecular mechanism of disease resistance.
Project description:Gene expression analysis of chrysanthemum infected with three different viruses including Cucumber mosaic virus, Tomato spotted wilt virus, and Potato virus X have been performed using the chrysanthemum 135K microarray.
Project description:Potato virus YNTN (PVYNTN), causing potato tuber ring necrosis disease, dramatically lowers the quantity and the quality of the potato yield all over the world. The cultivar Igor is one of the most susceptible cultivars, developing severe disease symptoms on plants as well as on tubers. Finding genes differentially expressed in the early response to infection, when the host response is more defense- than infection- related, could improve our understanding of the potato - PVYNTN interaction. Differential gene expression in early response of potato cv. Igor plants to PVYNTN infection was studied using potato TIGR cDNA-microarrays. Expression was compared between mock inoculated and virus infected plants 12 hours after inoculation, in four biological replicates. Keywords: direct comparison
Project description:Potato genotypes from a diploid potato population were divided in two groups based on their response to Potato virus A (PVA). Plants exhibiting hypersensitive response were compared to plants exhibiting non-necrotic response (i.e. blocking virus movement without cell death).<br>The comparisons were made before inoculation and 12 and 24 hours post-inoculation.<br>
Project description:Potato virus YNTN (PVYNTN), causing potato tuber ring necrosis disease, dramatically lowers the quantity and the quality of the potato yield all over the world. The cultivar Igor is one of the most susceptible cultivars, developing severe disease symptoms on plants as well as on tubers. Finding genes differentially expressed in the early response to infection, when the host response is more defense- than infection- related, could improve our understanding of the potato - PVYNTN interaction. Differential gene expression in early response of potato cv. Igor plants to PVYNTN infection was studied using potato TIGR cDNA-microarrays. Expression was compared between mock inoculated and virus infected plants 12 hours after inoculation, in four biological replicates. Keywords: direct comparison Each microarray was hybridized with a virus inoculated sample and mock inoculated sample from the same biological replicate. Four biological replicates were analyzed.
Project description:To screen genes related to the development of sweet potato tuberous roots, the high throughput sequencing of different stages of sweet potato tuberous roots was performed. The fibrous roots (FR; roots at 20 dap), developing tuberous roots (DR; roots at 60 dap) and mature tuberous roots (MR; roots at 120 dap) of Ipomoea batatas (L.) Taizhong 6 and MBP3 overexpressed lines were used for transcriptome analysis. Totally, we identified 5488 differentially expressed genes between different stage tuberous roots of Taizhong6 and 14312 differentially expressed genes between the tuberous roots of Taizhong6 and MBP3 overexpressed lines, by calculating the gene FPKM in each sample and conducting differential gene analysis. This study provides a foundation for the mechanism analysis of sweet potato tuberous root development.
Project description:Gene expression analysis of chrysanthemum infected with three different viruses including Cucumber mosaic virus, Tomato spotted wilt virus, and Potato virus X have been performed using the chrysanthemum 135K microarray. Mock and each virus infected chrysanthemum plants were subjected for microarray analysis.
Project description:Potato virus YNTN (PVYNTN) is one of the most devastating potato virus causing great losses in the potato production industry. PVYNTN induces severe symptoms on inoculated leaves and a disease known as potato tuber necrosis ringspot disease (PTNRD) develops on tubers. Closely related PVYN isolate induces only mild symptoms on inoculated potato leaves and no symptoms on tubers. The early response of sensitive potato cvs. Igor and Nadine to inoculation with PVYNTN and PVYN was analysed allowing identification of genes involved in severe symptoms induction. Microarray and quantitative-PCR analysis was carried out to identify differentially expressed genes after inoculation with both virus isolates. Two distinct groups of genes were shown to have a role in severe symptoms development – one group of genes related to energy production and a second group of genes connected with virus spread. Earlier accumulation of sugars and decrease in photosynthesis was observed in leaves inoculated with aggressive PVYNTN isolate than in leaves inoculated with milder PVYN isolate. PVYNTN isolate was shown not to activate differential expression of antioxidant metabolism and pectinmethylesterase inhibitor (PMEI) leading to a delay in plant response and on the other hand it limited callose deposition enabling faster virus spread through the plant.