Project description:Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with 'potexvirus-like' replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative proteins are distant from plant viruses. DOSV is not readily classified in current lower order virus taxa.
Project description:With the increasing demand for donkey production, there has been a growing focus on the breeding of donkeys. However, our current understanding of the mechanisms underlying spermatogenesis and maturation in donkeys during reproduction remains limited.In this study, we constructed a single-cell RNA dataset to study the single-cell landscape of donkey spermatogenesis and maturation. This method allows us to analyze the cell composition in testicular and epididymal tissue, providing insights into the changes that occur during donkey spermatogenesis and maturation. In addition, different gene expression signatures associated with various spermatogenic cell types were found
Project description:Proteomics data from a combind transcriptome/proteome study of three sexually deceptive orchids of the genus Ophrys. Data are from labella of mature, unpollinated flowers of (1) Ophrys exaltata subsp. archipelagi, (2) O. sphegodes, and (3) O. garganica. Proteomics data were searched against SwissProt and TAIR databases and further against organism-specific databases obtained from transcriptome sequencing (454, Sanger ESTs and Solexa data). Thirteen trypsinised gel slices per sample were subjected to electrospray ionisation-based LC-MS/MS analysis with a 2D linear ion trap Finnigan LTQ (Thermo Electron Corporation) equipped with an Ultimate Nano HPLC System (Dionex Corporation). Mass spectra were searched against SwissProt and Arabidopsis TAIR9 protein databases to identify peptides. Additionally, spectra were searched against protein databases created from the Ophrys reference transcriptome obtained in this study. Stringent criteria were used for the assignment of spectra to peptides (95% peptide identification probability) in Scaffold 3.3 (Proteome Software Inc., USA). In order to maximise the utility of proteomics data for uncovering proteins predicted by the orchid transcriptome, a minimum of one unique peptide was used for protein identification, while using two different stringency levels for the probabilistic assignment of peptides to proteins (99% for highest quality, HQ; 90% to maximise protein discovery, PD, in the absence of a fully sequenced genome). Concerning the sequencing and transcriptomics results: Three normalised cDNA libraries were constructed from three different Ophrys species, O. exaltata, O. garganica, and O. sphegodes. These libraries were 454 pyrosequenced and all the high quality reads generated in this study are available in the Sequence Read Archive (SRA) of the National Centre for Biotechnology Information (NCBI) with the accession number SRA060767. Additional sequencing of O. sphegodes flower labella yielded 1.7 Mbp of Sanger (dbEST library LIBEST_028084; dbEST IDs 77978749-77979571; GenBank accessions JZ163765-JZ164587) and 2.5 Gbp of Illumina Solexa (SRA060767) data.