Project description:The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum.
Project description:The transcription factor Mac1 is a key regulator of copper homeostasis and controls the transcriptional response to copper-limiting conditions in fungi. Expression analyses performed in the soil-borne plant pathogen Fusarium oxysporum revealed that almost all copper starvation-induced genes are downregulated in the absence of the regulator Mac1. The aim of this ChIP-seq analysis is to elucidate which of these genes are direct targets of Mac1.
Project description:The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum. This dataset includes the cellular control sample that was analysed with shotgun mass-spec proteomics followed SearchGUI and Peptide shaker searches.
Project description:The fungal pathogen Fusarium moniliforme causes ear rot in maize. Ear rot in maize is a destructive disease globally caused by Fusarium moniliforme , due to decrease of grain yield and increase of risks in raising livestock by mycotoxins production. Plants have developed various defense pathways to cope with pathogens. We used microarrays to detail the global programme of gene expression during the infection process of Fusarium moniliforme in its host plant to get insights into the defense programs and the host processes potentially involved in plant defense against this pathogen.