Project description:Immune checkpoint inhibitors (ICI) represent new anticancer agents and have been used worldwide. However, ICI can potentially induce life-threatening severe cutaneous adverse reaction (SCAR), such as Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), hindering continuous ICI therapy. We examined 6 cohorts within 25 ICI-induced SJS/TEN patients and conducted single-cell RNA sequencing (scRNA-seq) analysis, which revealed overexpression of macrophage-derived CXCL10 that recruited CXCR3+ cytotoxic T lymphocytes (CTL) in blister cells from ICI-SJS/TEN skin lesions. ScRNA expression profiles and ex vivo blocking studies further identified TNF signaling as the key pathway responsible for macrophage-derived CXCL10 and CTL activation. Based on the trajectory analysis, ICI-activated T cells from whole blood are proposed to serve as the initial cells involved in inflammation, that lead to monocytes differentiating into macrophages and increasing their susceptibility to migrate to the lesion sites. Compared with systemic corticosteroids treatment, ICI-induced SJS/TEN patients treated with biologic TNF blockade showed a significantly rapid recovery and no recurrence of SCAR with continuous ICI therapy. Our findings identified that macrophage-eliciting CTL contribute the pathogenesis of ICI-induced epidermal necrolysis and provide the therapeutic targets for the management and prevention of SCAR induced by ICI therapy.
Project description:Tumor necrosis factor alpha induces vascular permeability, playing an important role in inflammation. Also, TNF-induced vascular leakage is involved in the increased extravasation of nanoparticle formulated chemotherapeutics improving drug delivery and subsequently tumor response, and we found a positive correlation between the presence of pericytes in the tumor-associated vasculature and TNF-induced leakage. RNA sequencing and pathway analysis of TNF-stimulated versus non-stimulated pericytes and endothelial cells show significant upregulation of several pathways involving interferon regulating pathways with a high expression of CXCL10, also known as Interferon gamma-inducible protein 10 (IP-10) in TNF-stimulated pericytes. In addition, CXCL10 protein production was significantly increased in conditioned medium from TNF-exposed pericytes compared to the other conditions. In our animal studies, we observed that tumor types with high pericyte covered vessels show enhanced permeability when exposed to TNF, which can be blocked with a neutralizing CXCL10 antibody. Vice versa, tumors with vessels low in pericyte number do not respond to TNF, i.e., do not express elevated permeability. Importantly, this lack of pericyte coverage can be compensated by co-administration of CXCL10. Our finding reveals a mechanism where TNF induces CXCL10 release from pericytes, being at the basis of increased permeability and thus vascular leakage.
Project description:Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening adverse drug reactions characterized by massive epidermal necrosis, in which the specific danger signals involved remain unclear. Here we show that blister cells from skin lesions of SJS-TEN primarily consist of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, and both blister fluids and cells were cytotoxic. Gene expression profiling identified granulysin as the most highly expressed cytotoxic molecule, confirmed by quantitative PCR and immunohistochemistry. Granulysin concentrations in the blister fluids were two to four orders of magnitude higher than perforin, granzyme B or soluble Fas ligand concentrations, and depleting granulysin reduced the cytotoxicity. Granulysin in the blister fluids was a 15-kDa secretory form, and injection of it into mouse skin resulted in features mimicking SJS-TEN. Our findings demonstrate that secretory granulysin is a key molecule responsible for the disseminated keratinocyte death in SJS-TEN and highlight a mechanism for CTL- or NK cell—mediated cytotoxicity that does not require direct cellular contact.
Project description:Chemotherapy with anti PD-1/PD-L1 mAb has become the standard of care for patients with metastatic non-small cell lung cancer (NSCLC). Using lung tumor models, where pemetrexed-platinum chemotherapy (PEM/CDDP) remains unable to synergize with immune checkpoint inhibitors (ICI), we linked failure of this treatment with its inability to induce CXCL10 expression and CD8+ T cell recruitment. Using drug screening, we showed that combining a MEK inhibitor (MEKi) with PEM/CDDP triggers CXCL10 secretion by cancer cells and CD8+ T cell recruitment, and restores ICI efficacy. PEM/CDDP plus MEKi promotes optineurin (OPTN)-dependent mitophagy, resulting in CXCL10 production in a mitochondrial DNA and TLR9-dependent manner. TLR9 or autophagy/mitophagy processes genetic inactivation of abort the antitumor efficacy of PEM/CDDP plus MEKi/anti PD-L1 therapy. In human NSCLC, high OPTN, TLR9 and CXCL10 expression is associated with better response to ICI. Our results underline the role of TLR9 and OPTN-dependent mitophagy in enhancing chemoimmunotherapy efficacy.
Project description:Chemotherapy with anti PD-1/PD-L1 mAb has become the standard of care for patients with metastatic non-small cell lung cancer (NSCLC). Using lung tumor models, where pemetrexed-platinum chemotherapy (PEM/CDDP) remains unable to synergize with immune checkpoint inhibitors (ICI), we linked failure of this treatment with its inability to induce CXCL10 expression and CD8+ T cell recruitment. Using drug screening, we showed that combining a MEK inhibitor (MEKi) with PEM/CDDP triggers CXCL10 secretion by cancer cells and CD8+ T cell recruitment, and restores ICI efficacy. PEM/CDDP plus MEKi promotes optineurin (OPTN)-dependent mitophagy, resulting in CXCL10 production in a mitochondrial DNA and TLR9-dependent manner. TLR9 or autophagy/mitophagy processes genetic inactivation of abort the antitumor efficacy of PEM/CDDP plus MEKi/anti PD-L1 therapy. In human NSCLC, high OPTN, TLR9 and CXCL10 expression is associated with better response to ICI. Our results underline the role of TLR9 and OPTN-dependent mitophagy in enhancing chemoimmunotherapy efficacy.
Project description:Chemotherapy with anti PD-1/PD-L1 mAb has become the standard of care for patients with metastatic non-small cell lung cancer (NSCLC). Using lung tumor models, where pemetrexed-platinum chemotherapy (PEM/CDDP) remains unable to synergize with immune checkpoint inhibitors (ICI), we linked failure of this treatment with its inability to induce CXCL10 expression and CD8+ T cell recruitment. Using drug screening, we showed that combining a MEK inhibitor (MEKi) with PEM/CDDP triggers CXCL10 secretion by cancer cells and CD8+ T cell recruitment, and restores ICI efficacy. PEM/CDDP plus MEKi promotes optineurin (OPTN)-dependent mitophagy, resulting in CXCL10 production in a mitochondrial DNA and TLR9-dependent manner. TLR9 or autophagy/mitophagy processes genetic inactivation of abort the antitumor efficacy of PEM/CDDP plus MEKi/anti PD-L1 therapy. In human NSCLC, high OPTN, TLR9 and CXCL10 expression is associated with better response to ICI. Our results underline the role of TLR9 and OPTN-dependent mitophagy in enhancing chemoimmunotherapy efficacy.
Project description:MCF7 breast cancer cell lines: drug-resistant (OHT and ICI) cell lines vs. drug-sensitive (wild type) cell lines. Assessment of association between gene expression and methylation. Two comparisons: OHT-resistant vs. wild type, and ICI-resistant vs. wild type. OHT: 4-hydroxytamoxifen ICI: fulvestrant ((ICI 182780) This submission represents the methylation component of the study.
Project description:Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening adverse drug reactions characterized by massive epidermal necrosis, in which the specific danger signals involved remain unclear. Here we show that blister cells from skin lesions of SJS-TEN primarily consist of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, and both blister fluids and cells were cytotoxic. Gene expression profiling identified granulysin as the most highly expressed cytotoxic molecule, confirmed by quantitative PCR and immunohistochemistry. Granulysin concentrations in the blister fluids were two to four orders of magnitude higher than perforin, granzyme B or soluble Fas ligand concentrations, and depleting granulysin reduced the cytotoxicity. Granulysin in the blister fluids was a 15-kDa secretory form, and injection of it into mouse skin resulted in features mimicking SJS-TEN. Our findings demonstrate that secretory granulysin is a key molecule responsible for the disseminated keratinocyte death in SJS-TEN and highlight a mechanism for CTL- or NK cell—mediated cytotoxicity that does not require direct cellular contact.