Project description:This SuperSeries is composed of the following subset Series: GSE8015: Pyruvate fermentation vs Lactate-Sulfate GSE8037: Hydrogen vs Lactate as electron donor in Sulfate reduction GSE8071: Pyruvate vs Lactate as electron donor in Sulfate reduction GSE8072: Thiosulfate vs Sulfate as electron acceptor in Sulfate reduction Keywords: SuperSeries Refer to individual Series
Project description:Bioelectrochemical systems employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microorganism species interact with an electrode as electron donor, not much is known about the interactions between different microbial species in a community. Here, we compare the bioelectrochemical performance of Shewanella oneidensis in a pure-culture and in a co-culture with the homolactic acid fermenter Lactococcus lactis. While S. oneidensis alone can only use lactate as electron donor for current production, the co-culture is able to convert glucose into current with a similar coulombic efficiency of approximately 17%, respectively. With (electro)-chemical analysis and transcription profiling, we found that the BES performance and S. oneidensis physiology were not significantly different whether grown as a pure- or co-culture. These co-culture experiments represent a first step in understanding microbial interactions in BES communities with the goal to design complex microbial communities, which specifically convert target substrates into electricity. Further, for the first time, we elucidated S. oneidensis gene expression with an electrode as the only electron acceptor. The expression pattern confirms many previous studies regarding the enzymatic requirements for electrode respiration, and it generates new hypotheses on the functions of proteins, which are so far not known to be involved in electrode respiration.
Project description:Engineering microbes with novel metabolic properties is a critical step for production of biofuels and biochemicals. Synthetic biology enables identification and engineering of metabolic pathways into microbes; however, knowledge of how to reroute cellular regulatory signals and metabolic flux remains lacking. Here we used network analysis of multi-omic data to dissect the mechanism of anaerobic xylose fermentation, a trait important for biochemical production from plant lignocellulose. We compared transcriptomic, proteomic, and phosphoproteomic differences across a series of strains evolved to ferment xylose under various conditions.
Project description:Engineering microbes with novel metabolic properties is a critical step for production of biofuels and biochemicals. Synthetic biology enables identification and engineering of metabolic pathways into microbes; however, knowledge of how to reroute cellular regulatory signals and metabolic flux remains lacking. Here we used network analysis of multi-omic data to dissect the mechanism of anaerobic xylose fermentation, a trait important for biochemical production from plant lignocellulose. We compared transcriptomic, proteomic, and phosphoproteomic differences across a series of strains evolved to ferment xylose under various conditions.
Project description:Producing the fuels and chemicals from renewable plant biomass has been thought as a feasible way for global sustainable development. However, the economical efficiency of biorefinery remains challenges. Here a cellulolytic thermophilic fungus, Myceliophthora thermophila, was constructed into a platform through metabolic engineering, which can efficiently convert lignocellulose to important bulk chemicals for polymers, four carbon 1, 4-diacids (malic and succinic acid), directly from lignocellulose without any extra enzymes addition or complicated pretreatment, with titer of over 200 g/L on cellulose and 110 g/L on plant biomass (corncob) during fed-batch fermentation. Our study represents a milestone of consolidated bioprocessing technology (CBP) and offers a new promising system for cost-effectively production of biomass-based chemicals and potentially fuels.
Project description:Bioelectrochemical systems employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microorganism species interact with an electrode as electron donor, not much is known about the interactions between different microbial species in a community. Here, we compare the bioelectrochemical performance of Shewanella oneidensis in a pure-culture and in a co-culture with the homolactic acid fermenter Lactococcus lactis. While S. oneidensis alone can only use lactate as electron donor for current production, the co-culture is able to convert glucose into current with a similar coulombic efficiency of approximately 17%, respectively. With (electro)-chemical analysis and transcription profiling, we found that the BES performance and S. oneidensis physiology were not significantly different whether grown as a pure- or co-culture. These co-culture experiments represent a first step in understanding microbial interactions in BES communities with the goal to design complex microbial communities, which specifically convert target substrates into electricity. Further, for the first time, we elucidated S. oneidensis gene expression with an electrode as the only electron acceptor. The expression pattern confirms many previous studies regarding the enzymatic requirements for electrode respiration, and it generates new hypotheses on the functions of proteins, which are so far not known to be involved in electrode respiration. The BES was either operated with S. oneidensis alone, fed with lactate, or it was operated with S. oneidensis and L. lactis with glucose as primary substrate. The basic medium was a modified M4 medium containing 0.5 g/L yeast extract, 0.5 g/L trypton and 5 g/L glycerol phosphate, besides the commen M4 incredients. S. oneidensis oxidizes lactate to acetate and electrons in a BES - the latter generate a current at a graphite anode. The anode biofilm was harvested after about 4 weeks of continuous BES operation and subjected to total RNA extraction.
Project description:Giant panda are carnivorous bears which feed almost exclusively on plant biomass (i.e. bamboo). The potential contribution of its gut microbiome to lignocellulose degradation has been mostly investigated with cultivation-independent approaches. Recently, we reported on the first lab-scale cultivation of giant panda gut microbiomes and described their actual fermentation capacity. Fermentation of bamboo leaf using green dung resulted in a neutral pH, the main products being ethanol, lactate and H2. Fermentation of bamboo pith using yellow dung resulted in an acidic pH, the main product being lactate. Here, we cultivated giant panda gut microbiomes to test 1) the impact of mixed dung as inoculum; 2) the fermentation capacity of solid lignocellulose as opposed to organics-rich biofluids in the dung; 3) the artificial shift of pH from neutral to acidic on bamboo leaf fermentation. Our results indicate that i) gut microbiomes fermentation of solid lignocellulose contributes up to a maximum of 1/3 even in the presence of organics-rich biofluids; ii) alcohols are an important product of bamboo leaf fermentation at neutral pH; iii) aside hemicellulose, gut microbiomes may degrade plant cell membranes to produce glycerol; iv) pH, rather than portion of bamboo, ultimately determines fermentation profiles and gut microbiome assemblage.
Project description:Furans (furfural and 5-hydroxymethylfurfural (HMF)), phenolic aldehydes (4-hydroxybenzaldehyde, syringaldehyde, and vanillin), and weak acids (acetic acid and formic acid) are the main degradation products of lignocellulose pretreatment process and seriously inhibit the cellullas enzyme activity and the fermentation process.
2022-07-21 | GSE208427 | GEO
Project description:WAS electro fermentation for MCFAs production