Project description:This SuperSeries is composed of the following subset Series: GSE14646: Gene expression in aerial parts of rice-Arabidopsis Os-LBD37 FOX plants GSE14647: Gene expression in leaf blades of the rice Os-LBD37 overexpressor line RK16331-13 Refer to individual Series
Project description:Aerial parts of the rice-Arabidopsis FOX (Full-length cDNA overexpressor) lines K16331 and K19624 harboring the rice FL cDNA of LBD37 (Os-LBD37) were analyzed. LBD37 belongs to the plant- specific LOB- (Lateral Organ Boundary) domain family proteins first characterized in Arabidopsis. Results point towards an involvement of the rice LBD37 ortholog of Arabidopsis in nitrogen metabolism- related processes.
Project description:Aerial parts of the rice-Arabidopsis FOX (Full-length cDNA overexpressor) lines K16331 and K19624 harboring the rice FL cDNA of LBD37 (Os-LBD37) were analyzed. LBD37 belongs to the plant- specific LOB- (Lateral Organ Boundary) domain family proteins first characterized in Arabidopsis. Results point towards an involvement of the rice LBD37 ortholog of Arabidopsis in nitrogen metabolism- related processes. K16331 (T2) and empty vector control plants (T2) were grown for 18 days on solid MS- medium supplemented with 20mg/l Hygromycin. For each hybridization on Affymetrix microarrays, 2 independent plants for K16331 were used. Homozygote K19624 (T3) and empty vector control plants (T3) were grown for 18 days on solid MS- medium. For each hybridization on Affymetrix microarrays, 1 plant was used.
Project description:We generated more than 23,000 independent Arabidopsis transgenic lines that expressed rice fl-cDNAs (Rice FOX Arabidopsis lines). The short generation time and rapid and efficient transformation frequency of Arabidopsis enabled the functions of the rice genes to be analyzed rapidly. We screened rice FOX Arabidopsis lines for alterations in morphology, photosynthesis, element accumulation, pigment accumulation, hormone profiles, secondary metabolites, pathogen resistance, salt-tolerance, UV signaling, high light tolerance, and heat stress tolerance. Since we isolated 6 genes (AK069096, AK073112, AK073675, AK065297, AK102323 and AK073210) causing an increase in the abundance of metabolites or pigments detected by absorption data, we investigated the expression profiles in transgenic plants by using microarray analysis. Expression of the genes encoding chalcone synthase and dihydroflavonol-4-reductase was increased in all 6 cDNA transformants. These results indicate that an increase in expression of the genes encoding flavonoid biosynthesis enzymes caused an accumulation of pigments in these 6 transformants. Experiment Overall Design: Total RNA was isolated from aerial parts of re-transformants of some rice cDNAs and wild type using an RNAqueous Kit (Ambion, Inc, USA).
Project description:To understand how GTL1 regulates cell growth, we first identified its potential direct targets by the chromatin immunoprecipitation followed by the hybridization on an Affymetrix Arabidopsis Tiling 1.0R array (ChIP-chip). To enrich the genomic region bound by GTL1 in vivo, we harvested whole aerial parts of 12-day-old gtl1-1 plants complemented with the pGTL:GTL1:GFP constructs and immunoprecipitated the chromatin fragments associated with GTL1-GFP proteins using antibodies against GFP. After applying a cut-off P-values of 0.001of MAT (Model-based analysis of tiling array), we identified a total number of 3,900 putative immediate target genes that showed consistent binding by GTL1.
Project description:When aboveground parts of intact plants are exposed to volatile organic compounds emitted from neighboring con-/heterospecific plants that are artificially damaged or damaged by herbivores, the resistant responses are induced in the plants. Differential responses of plants to enantiomers of the same volatile compound have also been reported in Arabidopsis: the root became shorter when Arabidopsis seedlings are exposed to aerial borneol, and the dose-dependent root length reduction was significantly different between (+)- and (-)-borneol. We identified (+)-borneol dependent inductive genes in Arabidpsis in this transcriptome analysis.
Project description:To understand how GTL1 regulates cell growth, we first identified its potential direct targets by the chromatin immunoprecipitation followed by the hybridization on an Affymetrix Arabidopsis Tiling 1.0R array (ChIP-chip). To enrich the genomic region bound by GTL1 in vivo, we harvested whole aerial parts of 12-day-old gtl1-1 plants complemented with the pGTL:GTL1:GFP constructs and immunoprecipitated the chromatin fragments associated with GTL1-GFP proteins using antibodies against GFP. After applying a cut-off P-values of 0.001of MAT (Model-based analysis of tiling array), we identified a total number of 3,900 putative immediate target genes that showed consistent binding by GTL1. Two IP chips compared to two Input chips.