Project description:Soil humic substances are known to positively influence plant growth and nutrition. In particular, low-molecular fractions have been shown to increase NO3- uptake and PM H+-ATPase activity and alter expression of related genes. Changes in maize root transcriptome due to treatment with nitrate (NO3-), Water-Extractable Humic Substances (WEHS) and NO3-+WEHS were analyzed.
2018-07-30 | GSE103184 | GEO
Project description:Vertically transmitted bacteria in tomato seeds
Project description:Humic substances have been widely used as plant growth promoters to improve the yield of agricultural crops. Root soluble protein profiles of 11 days after planting, cultivated with and without humic acids (50 mg C/L), were analysed using the label-free quantitative proteomic approach. The effects on root architecture, such as induction of lateral root and biomass increase were accompanied by changes in the proteins.
Project description:We performed a transcriptomic analysis on two tomato genotypes, M82 and Tondo, in response to a PEG-mediated osmotic treatment, mimicking water stress. The analysis was conducted separately on leaves and roots to characterize the specific response of these two organs. A total of 6,267 differentially expressed transcripts related to osmotic stress response was detected. The construction of gene co-expression networks defined the metabolic and signaling pathways of the common and specific responses of leaf and root. The common response was characterized by ABA-dependent and ABA-independent signaling pathways, and by the interconnection between ABA and JA signaling. The root specific response concerned genes involved in cell wall metabolism and remodeling, whereas the leaf specific response was principally related to leaf senescence and ethylene signaling. The transcription factors representing the hubs of these regulatory networks were identified. Some of them have not yet characterized and can represent novel candidates for tolerance. Finally, several genes showing a genotype-specific expression regulation in response to the treatment were detected. These genes may be involved in the different sensitivity to the osmotic treatment of the two tomato genotypes. In conclusion, this work shed new light on the regulatory networks occurring in tomato leaf and root under osmotic stress and set the base for an in-depth characterization of novel stress-related genes, that may represent potential candidates for improving tolerance to water stress in tomato.
Project description:Humic substances are principal components of soil organic matter. They have ecological importance as they intervene in regulating a large number of chemical and biological processes that occur in natural ecosystems. Their ability to improve plant growth has been well established in diverse plant species and growth conditions, although the mechanism responsible for this biological action is poorly understood. Microarray analysis might give us more information about up or down regulation of different biological processes. Wheat plants have been grown hydroponically and treated with Humic acid. Seeds were germinated in obscurity during 10 days, and grown in nutrient solution during 10 days. Harvests were conducted 24 hours, 72 hours and 30 days after treatment application, in order to study early response or a more sustained effect during time.
Project description:A comparative study ware made to know the abiotic stress tolerance machanism between tolerant and susceptible plants at flowering stage. The tolerance in response to abiotic stresses are sum of expression of thousands of genes at a particular stage. Tomato plants were exposed to drought and heat stress for RNA extraction and hybridization on Affymetrix microarrays. To study the molecular mechanism of abiotic stress tolerance to increase the tolerance in tomato plants, transcripts of tolerant and susceptible plants at flowering stage were compared in response to heat and water stress.
Project description:Plants coexist in close proximity with numerous microorganisms in their rhizosphere. With certain microorganisms, plants establish mutualistic relationships that can confer physiological benefits to the interacting organisms, including enhanced nutrient assimilation or increased stress tolerance. The root-colonizing endophytic fungi Penicillium chrysogenum, Penicillium minioluteum, and Serendipita indica have been reported to enhance the drought stress tolerance of plants. However, to date, the molecular mechanisms triggered by these fungi in plants remain unexplored. This study presents a comparative analysis of the effects on mock- and fungus-infected tomato plants (var. Moneymaker) under drought stress conditions (40% field capacity) and control conditions (100% field capacity). The findings provide evidence for the induction of common response modules by the fungi.