Project description:The increasing antibiotic resistance of Klebsiella pneumoniae poses a serious threat to global public health. To investigate the antibiotic resistance mechanism of Klebsiella pneumonia, we performed gene expression profiling analysis using RNA-seq data for clinical isolates of Klebsiella pneumonia, KPN16 and ATCC13883. Our results showed that mutant strain KPN16 is likely to act against the antibiotics through increased increased butanoate metabolism and lipopolysaccharide biosynthesis, and decreased transmembrane transport activity.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain MS14387.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain MS14384.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain B36.
Project description:This SuperSeries is composed of the following subset Series: GSE35746: Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling [tiling arrays] GSE35821: Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling [TSS-Seq] Refer to individual Series
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆fnr mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the FNR protein.
Project description:Comparison of the whole genome gene expression level of an amoxicillin resistant E. coli strain with the wildtype it was derived from. The process of amoxicillin adaptation of E. coli MG1655 wildtype cells is further descibed in van der Horst, M, J.M. Schuurmans, M. C. Smid, B. B. Koenders, and B. H. ter Kuile (2011) in Microb. Drug Resist. 17:141-147. Resistance to amoxicillin was induced in E. coli by growth in the presence of stepwise increasing antibiotic concentrations. To investigate consequences of the aquisition of amoxicillin resistance the transcriptomic profile of sensitive and resistant cells was compared in the absence and presence of sub-inhibitory (0.25xMIC) amoxicillin concentrations was compared.
Project description:Investigation of whole genome gene expression level in Klebsiella pneumoniae MGH78578 grown up to mid-exponential phase in M9 minimal media supplemented with 0.2% glucose