Project description:The increasing antibiotic resistance of Klebsiella pneumoniae poses a serious threat to global public health. To investigate the antibiotic resistance mechanism of Klebsiella pneumonia, we performed gene expression profiling analysis using RNA-seq data for clinical isolates of Klebsiella pneumonia, KPN16 and ATCC13883. Our results showed that mutant strain KPN16 is likely to act against the antibiotics through increased increased butanoate metabolism and lipopolysaccharide biosynthesis, and decreased transmembrane transport activity.
Project description:Klebsiella pneumoniae is an arising threat to human health. However, host immune responses in response to this bacterium remain to be elucidated. The goal of this study was to identify the dominant host immune responses associated with Klebsiella pneumoniae pulmonary infection. Pulmonary mRNA profiles of 6-8-weeks-old BALB/c mice infected with/without Klebsiella pneumoniae were generated by deep sequencing using Illumina Novaseq 6000. qRT–PCR validation was performed using SYBR Green assays. Using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, we identified several immune associated pathways, including complement and coagulation cascades, Toll-like receptor signaling pathway, Rap1 signaling pathway, chemokine signaling pathway, TNF signaling pathway, phagosome and NOD-like receptor signaling pathway, were involved in Klebsiella pneumoniae pulmonary infection. Using ICEPOP (Immune CEll POPulation) analysis, we found that several cell types were involved in the host immune response to Klebsiella pneumoniae pulmonary infection, including dendritic cells, macrophages, monocytes, NK (natural killer) cells, stromal cells. Further, IL-17 chemokines were significantly increased during Klebsiella pneumoniae infection. This study provided evidence for further studying the pathogenic mechanism of Klebsiella pneumoniae pneumonia infection.
Project description:Klebsiella pneumoniae poses significant threat to global health. Detailed investigation to the nature of its interaction to human epithelial cells is still lacking. OmpR is an important regulator to the expression of major outer membrane protein genes, ompF and ompC. Here, we exploited the recently described dual RNA-seq to simultaneously measure genome-wide expression of host and pathogen two hours into infection. By comparing OmpR deleted strain to its wildtype parental strain, we, simultaneously, reconstructed OmpR regulon and deletion effect to host response.
Project description:With increasingly concerning strains of antimicrobial resistant strains of the commensal, gram-negative bacteria Klebsiella pneumoniae emerging, there is a pressing need to better understand the pathogen and mechanisms behind its pathogenicity. This study investigated the regulatory mechanisms in strain MGH 78578 of two major sigma factors, the house-keeping sigma factor RpoD, and the general stress response sigma factor RpoS, in mid-exponential and early stationary phase using chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) followed by deep sequencing. Combining ChIP-exo and transcriptome analysis allowed for the determination of sigma factor binding sites, binding motifs, and genes included in the phase-specific sigmulons. The number of genes included in the RpoS sigmulon was greater than in the RpoD sigmulon, with 1,833 and 1,690 genes included, respectively; however, a majority of sigmulon genes were found in all phase-specific sigmulons. Focussing on pathogenicity genes, 20 antimicrobial resistance genes (ARGs) and 155 virulence genes, only two ARGs were found exclusively in one phase-specific sigmulon, an oxacillin-hydrolysing class D beta-lactamase and chloramphenicol efflux MFS transporter CmlA5, which were found in the RpoD sigmulon in early stationary phase. Notably, six unnamed proteins that are or pertain to fimbrial proteins were found uniquely in the RpoS sigmulon in early stationary phase. From this, it can be hypothesised that early stationary phase might be an important phase for pathogenicity gene regulation. While there is little conservation in RpoS sigmulons from strain to strain, RpoS appears to have a consistent overarching role across strains, including a role as a regulator of pathogenicity genes.