Project description:Domestication caused significant differences in morphology and behavior between wild and domestic animals, and gene expression changes played an important role in this event. circRNA is a class of non-coding RNA that exerts a wide range of functions in biological processes through the regulation of gene expression. However, the regulatory role of circRNA in the process of domestication is still unclear. Here, we analyzed circRNA expression patterns in the prefrontal cortices of wild boar and domestic pig to determine the potential role of circRNAs in domestication. We identified a total of 11,375 circRNAs and found that 349 and 354 circRNAs were up-regulated in wild boar and Rongchang pig, respectively. This study lays the groundwork for exploring the regulatory role of circRNA in the process of domestication and provides new insights that contribute to further investigation of the molecular mechanism of pig domestication.
Project description:Viral respiratory infections significantly affect young children, particularly extremely premature infants, resulting in high hospitalization rates and increased health-care burdens. Despite posing substantial health risks, airway immune responses in early life remain largely unexplored. Nasal epithelial cells, the primary defense against respiratory infections, are vital for understanding nasal immune responses and serve as a promising target for uncovering underlying molecular and cellular mechanisms. Using a trans-well pseudostratified nasal epithelial cell system, we examined age-dependent developmental differences and antiviral responses to influenza A and respiratory syncytial virus through systems biology approaches. Our studies revealed differences in innate-receptor repertoires, distinct developmental pathways, and differentially connected antiviral network circuits between neonatal and adult nasal epithelial cells. Consensus network analysis identified unique and shared cellular networks for influenza A and respiratory syncytial virus, emphasizing highly relevant virus-specific pathways. This research highlights the importance of nasal epithelial cells in innate antiviral immune responses and offers novel insights that should enable a deeper understanding of age-related differences in nasal epithelial cell immunity following respiratory virus infections.
Project description:Analysis of nasal epithelial cells from adult patients with seasonal allergic rhinitis and from non allergic controls. Results provide insight into the molecular mechanisms associated with inflammatory responses in nasal mucosa. Total RNA was obtained from nasal epithelial cells of 7 seasonal allergic rhinitis patients and 5 non-allergic control subjects
Project description:We report the application of single cell RNA sequencing technology for high-throughput profiling of nasal microbiome Staphylococcus epidermidis in human nasal epithelial cells.