Project description:In this work, we discussed the effects Acanthopanax senticosus Harms (ASE) combined with Gastrodia elata Blume (GEB) in the treatment of CIR injury. In pharmacodynamic studies, found that co-administration of ASE and GEB may improve neuronal injury and prevent neuronal apoptosis by reducing oxidative stress and inflammation, and also help prevent CIR injury. On the basis of our hypothesis, we combined the results of transcriptomic and metabonomic analyses and found that ASE and GEB could prevent cerebral ischemia-reperfusion injury induced by middle cerebral artery occlusion by targeting phenylalanine, pyrimidine, methionine, and sphingolipid metabolism. This study provides the basis for the compatibility and efficacy of ASE and GEB.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:The experiment at three long-term agricultural experimental stations (namely the N, M and S sites) across northeast to southeast China was setup and operated by the Institute of Soil Science, Chinese Academy of Sciences. This experiment belongs to an integrated project (The Soil Reciprocal Transplant Experiment, SRTE) which serves as a platform for a number of studies evaluating climate and cropping effects on soil microbial diversity and its agro-ecosystem functioning. Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of soil type, soil transplant and landuse changes on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in EarthM-bM-^@M-^Ys biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling. Fifty four samples were collected from three soil types (Phaeozem,Cambisol,Acrisol) in three sites (Hailun, Fengqiu and Yingtan) along a latitude with reciprocal transplant; Both with and without maize cropping in each site; Three replicates in every treatments.
Project description:Soil microbial community is a complex blackbox that requires a multi-conceptual approach (Hultman et al., 2015; Bastida et al., 2016). Most methods focus on evaluating total microbial community and fail to determine its active fraction (Blagodatskaya & Kuzyakov 2013). This issue has ecological consequences since the behavior of the active community is more important (or even essential) and can be different to that of the total community. The sensitivity of the active microbial community can be considered as a biological mechanism that regulates the functional responses of soil against direct (i.e. forest management) and indirect (i.e. climate change) human-induced alterations. Indeed, it has been highglihted that the diversity of the active community (analyzed by metaproteomics) is more connected to soil functionality than the that of the total community (analyzed by 16S rRNA gene and ITS sequencing) (Bastida et al., 2016). Recently, the increasing application of soil metaproteomics is providing unprecedented, in-depth characterisation of the composition and functionality of active microbial communities and overall, allowing deeper insights into terrestrial microbial ecology (Chourey et al., 2012; Bastida et al., 2015, 2016; Keiblinger et al., 2016). Here, we predict the responsiveness of the soil microbial community to forest management in a climate change scenario. Particularly, we aim: i) to evaluate the impacts of 6-years of induced drought on the diversity, biomass and activity of the microbial community in a semiarid forest ecocosystem; and ii) to discriminate if forest management (thinning) influences the resistance of the microbial community against induced drought. Furthermore, we aim to ascertain if the functional diversity of each phylum is a trait that can be used to predict changes in microbial abundance and ecosystem functioning.
Project description:High-density aquaculture and over-nutrition may cause fatty liver disease in hybrid yellow catfish, reduce the quality of fish products, and limit the development of the industry. In this experiment, Acanthopanax senticosus powder was used as an additive for hybrid yellow catfish feed. A control group (fed on a diet without A.senticosus) and five groups fed on diets supplemented with A.senticosus (0.5, 1, 2, 4 and 8 g A.senticosus / kg). To study the effects of A.senticosus on the growth performance and physiological parameters of hybrid yellow catfish, and to determine the effect of A.senticosus on the expression of genes related to lipid metabolism in the liver by transcriptome analysis. It was found that dietary supplementation with A.senticosus at 2-4g/kg can promote the growth of yellow catfish, reduce the levels of total cholesterol and triacylglycerol in serum, and increase the activity of fatty acid synthase involved in lipid transport in the liver. Gene expression profiles in the liver were compared between the control group and 4g/kg A.senticosus group, and 5 differentially expressed genes in these groups were identified. Annotation analyses using tools at the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases showed that these five differentially expressed genes were mainly involved in the regulation of fat metabolism. The experimental results show that adding a suitable amount of A.senticosus in the diet can reduce the expression of FADS2, ELOVL2, and PLPP3 genes in the liver and stimulate the expression of CYP24a gene, which will reduce the contents of TG and TC in the body, reduce the deposition of fat in the tissue, and promote lipid Metabolism to achieve the purpose of protecting the liver. Therefore, A.senticosus can be used as a healthy feed additive for hybrid yellow catfish, and the appropriate content in the diet is 2-4g/kg.
Project description:A comparision of soil microbial functional genes of three types of subtropical broad-leaved forests Microbial functional structure was significantly different among SBFs (P < 0.05). Compared to the DBF and the EBF, the MBF had higher alpha-diversity of functional genes but lower beta-diversity, and showed more complex functional gene networks.
Project description:The functional diversity of soil microbial communities was explored for a poplar plantation, which was treated solely with biogas slurry, or combined with biochar at different fertilization intensities over several years.