Project description:Activation-induced cytidine deaminase (AID) specific amplifications and deletions in BCR-ABL1 positive Leukemia mouse cells. Bone marrow from Balb/CJ WT and Balb/CJ AID KO mice was transduced with BCR-ABL1. The AID specific amplifications and deletions where analyzed with an Agilent 244A mouse whole Genome CGH Array.
Project description:Activation-Induced Cytidine Deaminase (AID) is required for somatic hypermutation and immunoglobulin (Ig) class switch recombination in germinal center B lymphocytes. Occasionally, AID targets non-Ig genes, thereby contributing to B cell lymphomagenesis. We recently reported aberrant expression of AID in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). To elucidate the biological significance of aberrant AID expression, we studied loss of AID function in a murine model of BCR-ABL1 ALL. Mice transplanted with BCR-ABL1-transduced AID-/- bone marrow had prolonged survival as compared to mice transplanted with leukemia cells generated from AID+/+ bone marrow. Consistent with a causative role of AID in genetic instability, AID-/- leukemia had a decreased frequency of amplifications, deletions and a lower frequency of mutations in non-Ig genes including Pax5 and Rhoh as compared to AID+/+ leukemias. AID-/- and AID+/+ ALL cells showed a markedly distinct gene expression pattern as determined by principle component analysis, with 2,365 genes differentially expressed. In contrast to AID+/+ leukemia, AID-/- ALL cells failed to downregulate a number of tumor suppressor genes such as Rhoh, Cdkn1a (p21), and Blnk (SLP65). We conclude that AID accelerates clonal evolution in BCR-ABL1 ALL by enhancing genetic instability, aberrant somatic hypermutation, and by transcriptional inactivation of tumor suppressor genes. Experiment Overall Design: We used microarrays to detect differences in gene expression profiles between AID expressing leukemia and AID deficient leukemia
Project description:Activation-Induced Cytidine Deaminase (AID) is required for somatic hypermutation and immunoglobulin (Ig) class switch recombination in germinal center B lymphocytes. Occasionally, AID targets non-Ig genes, thereby contributing to B cell lymphomagenesis. We recently reported aberrant expression of AID in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). To elucidate the biological significance of aberrant AID expression, we studied loss of AID function in a murine model of BCR-ABL1 ALL. Mice transplanted with BCR-ABL1-transduced AID-/- bone marrow had prolonged survival as compared to mice transplanted with leukemia cells generated from AID+/+ bone marrow. Consistent with a causative role of AID in genetic instability, AID-/- leukemia had a decreased frequency of amplifications, deletions and a lower frequency of mutations in non-Ig genes including Pax5 and Rhoh as compared to AID+/+ leukemias. AID-/- and AID+/+ ALL cells showed a markedly distinct gene expression pattern as determined by principle component analysis, with 2,365 genes differentially expressed. In contrast to AID+/+ leukemia, AID-/- ALL cells failed to downregulate a number of tumor suppressor genes such as Rhoh, Cdkn1a (p21), and Blnk (SLP65). We conclude that AID accelerates clonal evolution in BCR-ABL1 ALL by enhancing genetic instability, aberrant somatic hypermutation, and by transcriptional inactivation of tumor suppressor genes.
Project description:The Philadelphia chromosome (Ph) encoding the oncogenic BCR-ABL1 kinase defines a subset of ALL with a particularly unfavorable prognosis. Acute lymphoblastic leukemia (ALL) cells are derived from B cell precursors in most cases and typically carry rearranged immunglobulin heavy chain (IGH) variable (V) region genes devoid of somatic mutations. Somatic hypermutation is restricted to mature germinal center B cells and depends on activation-induced cytidine deaminase (AID). Studying AID expression in 108 cases of ALL, we detected AID mRNA in 24 of 28 Ph-positive ALLs as compared to 6 of 80 Ph-negative ALLs. Forced expression of BCR-ABL1 in Ph-negative ALL cells and inhibition of the BCR-ABL1-kinase showed that aberrant expression of AID depends on BCR-ABL1 kinase activity. Consistent with aberrant AID expression in Ph-positive ALL, IGH V region genes and BCL6 were mutated in many Ph-positive but unmutated in most Ph-negative cases. In addition, AID introduced DNA-single-strand breaks within the tumor suppressor gene CDKN2B in Ph-positive ALL cells, which was sensitive to BCR-ABL1 kinase inhibition and silencing of AID expression by RNA interference. These findings identify AID as a BCR-ABL1-induced mutator in Ph-positive ALL cells, which may be relevant with respect to the particularly unfavorable prognosis of this leukemia subset. Experiment Overall Design: To study the gene expression profile of two Ph-positive ALL cell lines (BV173 and SUP-B15) in the presence or absence of 10 μmol/l STI571 for 16 hours
Project description:The Philadelphia chromosome (Ph) encoding the oncogenic BCR-ABL1 kinase defines a subset of ALL with a particularly unfavorable prognosis. Acute lymphoblastic leukemia (ALL) cells are derived from B cell precursors in most cases and typically carry rearranged immunglobulin heavy chain (IGH) variable (V) region genes devoid of somatic mutations. Somatic hypermutation is restricted to mature germinal center B cells and depends on activation-induced cytidine deaminase (AID). Studying AID expression in 108 cases of ALL, we detected AID mRNA in 24 of 28 Ph-positive ALLs as compared to 6 of 80 Ph-negative ALLs. Forced expression of BCR-ABL1 in Ph-negative ALL cells and inhibition of the BCR-ABL1-kinase showed that aberrant expression of AID depends on BCR-ABL1 kinase activity. Consistent with aberrant AID expression in Ph-positive ALL, IGH V region genes and BCL6 were mutated in many Ph-positive but unmutated in most Ph-negative cases. In addition, AID introduced DNA-single-strand breaks within the tumor suppressor gene CDKN2B in Ph-positive ALL cells, which was sensitive to BCR-ABL1 kinase inhibition and silencing of AID expression by RNA interference. These findings identify AID as a BCR-ABL1-induced mutator in Ph-positive ALL cells, which may be relevant with respect to the particularly unfavorable prognosis of this leukemia subset. Keywords: gene expression array-based (RNA / in situ oligonucleotide)
Project description:This comparative genomic hybridization (CGH) study investigated the effect of BCL6 on clonal evolution in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). The frequencies of copy number alterations in BCR-ABL1-transformed BCL6+/+ and BCL6-/- leukemias were determined.
Project description:The BCR-ABL1 translocation product is the cause of Chronic Myeloid Leukemia (CML) and of a significant fraction of adult-onset B-Acute Lymphoblastic Leukemia (B-ALL) cases. Here we identify an essential role for gamma-catenin (junction plakoglobin) in B lineage restricted cells for the progression of B-ALL in a mouse model. The array analysis of preleukemic B cells aimed at identifying genes that explain the deficient B-ALL progression in the absence gamma-catenin. Total bone marrow cells from chimeric mice expressing or lacking gamma-catenin in the hematopoietic compartment were transduced with BCR-ABL1+ IRES GFP retrovirus before transplantation into lethally irradiated wild type recipients. Three weeks later, GFP+ (BCR-ABL1+) B220+ BP-1+ B cells were flow sorted from the bone marrow of preleukemic recipient mice. The analysis includes 3 replicates for gamma-catenin WT and 3 replicates for gamma-catenin KO BCR-ABL1+ BP1+ B cells.
Project description:This comparative genomic hybridization (CGH) study investigated the effect of BCL6 on clonal evolution in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). The frequencies of copy number alterations in BCR-ABL1-transformed BCL6+/+ and BCL6-/- leukemias were determined. Three BCR-ABL1-transformed BCL6+/+ and BCL6-/- ALL samples derived from mice were maintained for 4 month in cell culture and were subjected to CGH analysis. As control samples, normal untransformed splenoytes were used.
Project description:BCR-ABL1+ leukemia entity still is associated with poor prognosis and new therapies are urgently needed. Heat shock proteins of 90 kDa (HSP90) have been widely studied due to their chaperone function, implicated in stabilizing various oncoproteins, including BCR-ABL1 kinase. However, HSP90 inhibitors (HSP90i) have not entered routinely in clinics, primarily due to the associated resistance via heat shock response (HSR) induction and dose limiting toxicity. Accordingly to study complications coupled with HSP90i, with aim to develop a novel strategy for therapy-refractory BCR-ABL1+ leukemia, genetic knockout (KO) models of cytosolic HSP90α/β isoforms were generated. Notably, β-KO cells displayed augmented HSR, whereas, α-KO cells revealed higher abundance of BCR-ABL1-foci and related hyperactive downstream pro-survival signaling. Although there is a strong compensatory behavior reported among HSP90α and β isoforms in their chaperoning their client proteins, global multi-omics profiling of α- vs. β-KO cells revealed a distinctive phenotype of the regulated signaling networks. Whereas in vivo engraftment of BCR-ABL1+ cells was found significantly reduced upon α-KO, validated by the prolonged overall survival of the mice. Later to investigate the acquired resistance evoked upon pharmacological targeting of HSP90, resistant cells were generated by chronic exposure of distinct HSP90i. Strikingly, clinically advanced (HSP90i) PU-H71-resistant cells acquired amplification and a distinctive mutation (S164F) in the HSP90AA1 locus, with concomitant elevation of HSP90α and ALDH1A1 expression, via activating ribosomal protein S6 kinase. Moreover BCR-ABL1+ cells displayed hypersensitivity toward CDK7i upon α-KO or when applied in combination with HSP90i, noticeably due to elevated CDK7 and androgen receptor (AR) signaling.
Project description:BCR-ABL1-targeting tyrosine kinase inhibitors (TKIs) have revolutionized treatment of Philadelphia chromosome-positive (Ph+) hematologic neoplasms. Nevertheless, acquired TKI resistance remains a major problem in chronic myeloid leukemia (CML), and TKIs are less effective against Ph+ B-cell acute lymphoblastic leukemia (B-ALL). GAB2, a scaffolding adaptor that binds and activates SHP2, is essential for leukemogenesis by BCR-ABL1, and a GAB2 mutant lacking SHP2 binding cannot mediate leukemogenesis. Using a genetic loss-of-function approach and bone marrow transplantation (BMT) models for CML and BCR-ABL1+ B-ALL, we show that SHP2 is required for BCR-ABL1-evoked myeloid and lymphoid neoplasia. Ptpn11 deletion impairs initiation and maintenance of CML-like myeloproliferative neoplasm, and compromises induction of BCR-ABL1+ B-ALL. SHP2, and specifically, its SH2 domains, PTP activity and C-terminal tyrosines, is essential for BCR-ABL1+, but not WT, pre-B cell proliferation. The MEK/ERK pathway is regulated by SHP2 in WT and BCR-ABL1+ pre-B cells, but is only required for the proliferation of BCR-ABL1+ cells. SHP2 is required for SRC family kinase (SFK) activation only in BCR-ABL1+ pre-B cells. RNAseq reveals distinct SHP2-dependent transcriptional programs in BCR-ABL1+ and WT pre-B cells. Our results suggest that SHP2, via SFKs and ERK, represses MXD3/4 to facilitate a MYC-dependent proliferation program in BCR-ABL1-transformed pre-B cells.