Project description:Whole genome sequencing of Methylorubrum extorquens PA1 strain deleted fdh1, fdh2, fdh3, and fdh4, 16 weeks of continuous transfer in formate-containing medium - Raw sequence reads
Project description:Three independent cultures of Methylorubrum extorquens PA1 delta cel were grown on ammonium mineral salts with either methanol or succinate provided as the sole carbon and energy source. The supernatant was subsequently extracted with acidified ethyl acetate and analyzed by LC-MS.
Project description:The meristem-associated endosymbiont M. extorquens DSM13060 significantly increases needle and root growth of Scots pine (Pinus sylvestris L.) seedlings without producing plant hormones, but by aggregating around host nuclei. Here we studied gene expression of the pine host induced by M. extorquens DSM13060 infection. We selected the time point of 90 days post-inoculation for our analysis based, because at this point, Methylorubrum extorquens DSM13060 has systemically colonized the pine seedlings, being found throughout tissues of roots and shoots.
Project description:Methylorubrum extorquens AM1 is engineered to produce itaconic acid by heterologous expression of cis-aconitic acid decarboxylase. Mutation was also performed on phaR in Methylorubrum extorquens AM1, which regulate poly-beta-hydroxybutyrate accumulation, in attempt to increase carbon flux toward itaconic acid production. However, in our case, itaconic acid production by phaR mutant strain was not higher than that of the wildtype. Transcriptomic analysis was utilized in order to examine the cause for this phenomenon. RNA-seq analysis revealed that phaR mutation in the itaconic acid-producing strain might result in a complex regulatory rewiring at the gene expression level, which could cause a reduced resource flux toward ITA production. Also, RNA profiling gave a hint at the broad regulatory role of PhaR.
Project description:We report a genetic variant of Methylorubrum extorquens AM1 that hyperaccumulates the heavy lanthanide gadolinium. Using RNA-seq transcriptomics we identified wide-spread metabolic and physiological changes in this strain and experimentally validate several of them, including increased gadolinium transport and storage in an intracellular compartment we name the lanthasome.