Project description:A significant part of the heavier petroleum fraction resulting from offshore oil-spills sinks to the deep-sea. Its fate and biodegradation by microbial communities is unclear. In particular, the physiological and metabolic features of hydrostatic pressure (HP) adapted oil-degraders have been neglected. In this study, hydrocarbon-free sediment from 1km below surface water (bsl) was incubated at 0.1, 10 and 20MPa (equivalent to surface waters, 1 and 2km bsl) using triacontane (C30) as sole carbon source for a 3-month enrichment period. HP strongly impacted biodegration, as it selected for microbial communities with small cells, high O2 respiration and nutrients requirements, but low biomass and C30-degradation yields. The alkane-degrading metaproteome linked to β-oxidation was detected but its expression was reduced under HP contrary to several housekeeping genes. This was reflected in the enriched communities, as atmospheric pressure was dominated by hydrocarbonoclastic bacteria while non-specialized or previously unrecognized oil-degrading genera were enriched under HP.
2018-12-19 | PXD004328 | Pride
Project description:Microbial community of oil sands tailings pond/end-pit lake
| PRJNA846771 | ENA
Project description:16S rRNA community analysis of oil sands tailings ponds
| PRJNA432217 | ENA
Project description:Transcriptome analysis of Willow grown on oil sands tailings
| PRJNA762091 | ENA
Project description:Genome sequencing of microorganisms from oil sands tailings ponds
Project description:Samples of oil and production water were collected from five wells of the Qinghai Oilfield, China, and subjected to GeoChip hybridization experiments for microbial functional diversity profiling. Unexpectedly, a remarkable microbial diversity in oil samples, which was higher than that in the corresponding water samples, was observed, thus challenging previously believed assumptions about the microbial diversity in this ecosystem. Hierarchical clustering separated oil and water samples, thereby indicating distinct functional structures in the samples. Genes involved in the degradation of hydrocarbons, organic remediation, stress response, and carbon cycling were significantly abundant in crude oil, which is consistent with their important roles in residing in oil. Association analysis with environmental variables suggested that oil components comprising aromatic hydrocarbons, aliphatic hydrocarbons, and a polar fraction with nitrogen-, sulfur-, and oxygen-containing compounds were mainly influential on the structure of the microbial community. Furthermore, a comparison of microbial communities in oil samples indicated that the structures were depth/temperature-dependent. To our knowledge, this is the first thorough study to profile microbial functional diversity in crude oil samples.
2016-04-01 | GSE55293 | GEO
Project description:Characterization of Novel Pseudomonas Isolates from Oil Sands Tailings Ponds
| PRJNA740245 | ENA
Project description:Microbial community in oil sands tailings following capping and native boreal community plantation