Project description:The CHARM (Cancer Health Assessment Reaching Many) study will assess the utility of clinical exome sequencing and how it affects care in diverse populations. The study population includes adults at risk for hereditary cancer syndromes.
The primary objective is to implement a hereditary cancer risk assessment program in healthy 18-49 year-olds in primary care settings within a vertically integrated health delivery system (Kaiser Permanente) and a federal qualified health center (Denver Health). The investigators will assess clinical exome sequencing implementation and interpretation, as well as tailored interactions for low health literacy including a contextualized consent process, and a modified approach to results disclosure and genetic counseling. The investigators will also assess the clinical utility (healthcare utilization and adherence to recommended care) and personal utility of primary and additional results from clinical exome sequencing, and evaluate the ethical and policy implications of considering personal utility of genomic information decisions for health care coverage.
Project description:Agilent whole exome hybridisation capture was performed on genomic DNA derived from Chondrosarcoma cancer and matched normal DNA from the same patients. Next Generation sequencing performed on the resulting exome libraries and mapped to build 37 of the human reference genome to facilitate the identification of novel cancer genes. Now we aim to re find and validate the findings of those exome libraries using bespoke pulldown methods and sequencing the products.
Project description:Whole exome sequencing of 5 MDS/MPN patients to identify the target of chromosome 22 acquired uniparental disomy (22aUPD). For samples E4051 and E6523, peripheral blood leucocytes (tumour) and cultured T-cells (germline) were prepared for exome sequencing using the Agilent SureSelect kit (Agilent Technologies, Palo Alto, CA, USA) (Human All Exon 50 Mb) and then sequenced on an Illumina HiSeq 2000 (Illumina, Great Abington, UK) at the Wellcome Trust Centre for Human Genetics, Oxford, UK. For samples ULSAM1182, ULSAM1242 and ULSAM1356, peripheral blood leukocyte DNA only were exome sequenced by SciLifeLab (Stockholm, Sweden).
Project description:Single Gland Whole-exome sequencing: building on our prior description of multi-region WES of colorectal tumors and targeted single gland sequencing (E-MTAB-2247), we performed WES of multiple single glands from different sides (right: A and left: B) of two tumors in this study (tumor O and U) on the illumina platform using the Agilent SureSelect 2.0 or illumina Nextera Rapid Capture Exome kit (SureSelect or NRCE, as indicated in the naming of fastq files). Colorectal Cancer Xenograft Whole-exome sequencing: The HCT116 and LoVo Mismatch-Repair-deficient colorectal adenocarcinoma cell lines were obtained from the ATCC and cultured under standard conditions. For both cell lines, a single âfoundingâ cell was cloned and expanded in vitro to ~6M cells. Two aliquots of ~1M cells were subcutaneously injected into opposite flanks (right and left) of a nude mouse and tumors allowed to reach a size of ~1B cells (1cm3) before the animal was sacrificed. Tumor tissue was collected separately from the right and left lesions and DNA was extracted for WES using the illumina TruSeq Exome kit or Nextera Rapid Capture Exome expanded Kits (Truseq or NRCEe), as was DNA from the first passage population (a polyclonal tissue culture for HCT116 and a polyclonal xenograft sample for LoVo), which were employed as a control to study mutation accumulation in culture and post xenotransplantation.