Project description:The PiwiM-bM-^@M-^SpiRNA complex (PiwiM-bM-^@M-^SpiRISC) in Drosophila ovarian somatic cells represses transposons transcriptionally to maintain genome integrity; however, the underlying mechanisms remain obscure. We performed mRNA-seq analysis from OSCs transfected with siRNAs against CG3893, the known piRNA pathway genes, Piwi, Maelstrom, HP1a and Armitage, and the control (EGFP), and PolII ChIP-seqanalysis from OSCs transfected with siRNAs against CG3893, Piwi, Mael and the control (EGFP). This result indicates that CG3893 is a novel factor for primary piRNA pathway in OSCs. RNA levels in wild-type (EGFP control knock-down) ovarian somatic cells (OSC) and RNAi knock-downs of Piwi, Armi, Mael, CG3893, and HP1a. RNA Polymerase II occupancy in wild-type (EGFP control knock-down) ovarian somatic cells (OSC) and RNAi knock-downs of Piwi, Mael, and CG3893.
Project description:piRNAs function in silencing retrotransposons by associating with the PIWI proteins, AGO3, Aub, and Piwi, in Drosophila germlines. Bioinformatics analyses of piRNAs in Drosophila ovaries suggested that piRNAs are produced by two systems, the primary processing pathway and the amplification loop, from repetitive genes and piRNA clusters in the genome. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner. However, the primary processing pathway remains largely conceptual. Here we show that in ovarian somatic cells, which lack Aub and AGO3 but express Piwi, the primary processing pathway for piRNAs indeed exists. Keywords: Small RNA profiling by high throughput sequencing Piwi-associated small RNAs were extracted from Drosophila ovarian somatic cells and their deep sequencing was carried out.
Project description:Analysis of Piwi-piRNAs that assocaite with wild type Piwi and specificity loop (SL) mutants in ovarian somatic sheath cells (OSC) and Droosphila ovaries.
Project description:Drosophila Piwi-family proteins have been implicated in transposon control. Here, we examine piwi-interacting RNAs (piRNAs) associated with each Drosophila Piwi protein and find that Piwi and Aubergine bind RNAs that are predominantly antisense to transposons, whereas Ago3 complexes contain predominantly sense piRNAs. As in mammals, the majority of Drosophila piRNAs are derived from discrete genomic loci. These loci comprise mainly defective transposon sequences, and some have previously been identified as master regulators of transposon activity. Our data suggest that heterochromatic piRNA loci interact with potentially active, euchromatic transposons to form an adaptive system for transposon control. Complementary relationships between sense and antisense piRNA populations suggest an amplification loop wherein each piRNA-directed cleavage event generates the 5’ end of a new piRNA. Thus, sense piRNAs, formed following cleavage of transposon mRNAs, may enhance production of antisense piRNAs, complementary to active elements, by directing cleavage of transcripts from master control loci. Keywords: small RNA libraries from Drosophila ovaries small RNAs (23-29nt) were isolated from total ovarian RNA or from immunopreciptated Piwi/Aubergine/Ago3 complexes. cDNA libraries were constructed after Pfeffer et al. 2005 (Nat. Methods) and sequenced at 454 Life Sciences. The used strain is OregonR. Only sequences matching the Release5 genome assembly (www.fruitfly.org) are considered.
Project description:piRNAs direct Piwi to repress transposons to maintain genome integrity in Drosophila ovarian somatic cells. piRNA maturation and association with Piwi occur at perinuclear Yb bodies, the centers of piRNA biogenesis. Here, we show that piRNA intermediates arising from the piRNA cluster flamenco (flam) concentrate into perinuclear foci adjacent to Yb bodies, termed Flam bodies. Although flam expression is not required for Yb body formation, Yb, the core component of Yb bodies, is required for Flam body formation. Abolishment of the RNA-binding activity of Yb disrupts both Yb bodies and Flam bodies. Loss of Zucchini, an endoribonuclease necessary for piRNA maturation, enlarges Flam bodies, which now superimpose with Yb bodies. Yb directly binds flam, but not neighboring protein-coding gene, transcripts. Thus, Yb integrates piRNA processing factors and piRNA intermediates into Yb bodies and Flam bodies, respectively, through direct binding to enhance piRNA biogenesis and formation of piRNA-inducing silencing complexes. HITS-CLIP was performed using OSC (Ovarian Somatic Cells). The antibody for Drosophila Yb, which was generated in this study, was used. Obtained CLIP tags were analyzed using illumina HiSeq200.
Project description:Heterochromatin, representing the silenced state of transcription, largely consists of transposon-enriched and highly repetitive sequences. Implicated in heterochromatin formation and transcriptional silencing in Drosophila are PIWI and repeat-associated small interfering RNAs (rasiRNAs). Despite this, the role of PIWI in rasiRNA expression and heterochromatic silencing remains unknown. Here we report the identification and characterization of 12,903 PIWI-interacting RNAs (piRNAs) in Drosophila, demonstrating that rasiRNAs represent a subset of piRNAs. Keywords: PIWI, piRNA, epigenetic regulation, heterochromatin PIWI-associated small RNA cDNA library was sequenced for one time by high-throughput 454 pyrosequencing. Putative small RNA sequences were extracted and BLAST against the Drosophila melanogaster genome release 5. Presented here is a list of non-redundant PIWI-associated small RNAs, which have at least one genome match determined by BLASTn.
Project description:PIWI-interacting RNAs (piRNAs) are animal gonad-specific small RNAs that control the activity of transposable elements. Long single stranded RNAs from a variety of sources are substrates for the nebulous primary processing pathway that converts these into thousands of 24-30 nucleotide (nt) piRNAs. How these transcripts are selected as precursors is not known. Here we show that targeting a transcript with PIWI slicer activity of cysosolic Ago3 is sufficient to trigger ~30-nt waves of non-overlapping primary piRNAs in the fly ovarian germline. The generated primary piRNAs are almost exclusively loaded into the nuclear PIWI protein, Piwi. In the fly ovarian somatic environment we find that an RNA fragment from the 5? end of a piRNA cluster is able to direct a heterologous sequence into primary processing. This piRNA trigger sequence (PTS) element drives generation of overlapping piRNAs from the transcript. Both mechanisms proceed with general 5?-3? directionality. We propose that the former pathway serves to link cytoplasmic silencing of a target to nuclear transcriptional repression, while the latter extracts silencing information from a wide variety of genomic sources including piRNA clusters, select protein coding and transposon transcripts. Total or immunoprecipitated small RNAs were purified from transfected BmN4 cells, Drosophila ovarian somatic cells (OSC) and from fly ovaries and high-throughput sequencing libraries were prepared. The mouse testicular RNAs were purified after ribozero treatment.
Project description:Heterochromatin, representing the silenced state of transcription, largely consists of transposon-enriched and highly repetitive sequences. Implicated in heterochromatin formation and transcriptional silencing in Drosophila are PIWI and repeat-associated small interfering RNAs (rasiRNAs). Despite this, the role of PIWI in rasiRNA expression and heterochromatic silencing remains unknown. Here we report the identification and characterization of 12,903 PIWI-interacting RNAs (piRNAs) in Drosophila, demonstrating that rasiRNAs represent a subset of piRNAs. Keywords: PIWI, piRNA, epigenetic regulation, heterochromatin
Project description:The PIWI interacting RNA pathway is a small RNA silencing system that keeps selfish genetic elements such as transposons under control in animal gonads. Several lines of evidence indicate that nuclear PIWI family proteins guide transcriptional silencing of their targets, yet the composition of the underlying silencing complex is unknown. Here we demonstrate that the double CHHC zinc finger protein Gtsf1 is an essential factor for Piwi mediated transcriptional repression in Drosophila. Cells lacking Gtsf1 contain nuclear Piwi loaded with piRNAs, yet Piwi's silencing capacity is ablated. Gtsf1 interacts stably with a sub-population of nuclear Piwi and loss of Gtsf1 phenocopies loss of Piwi in terms of deregulation of transposons, loss of H3K9me3 marks at euchromatic transposon insertions and deregulation of genes in proximity to repressed transposons. We propose that only a small fraction of nuclear Piwi interacts productively with a target RNA, resulting in assembly of a silencing complex with Gtsf1 as one core component. impact of loss of DmGtsf1 on transcription and H3K9m3 in ovarian somatic cells (OSC)