Project description:Microbial RNAseq analysis of cecal and fecal samples collected from mice colonized with the microbiota of human twins discordant for obesity. Samples were colleted at the time of sacrifice, or 15 days after colonization from mice gavaged with uncultured or cultured fecal microbiota from the lean twins or their obese co-twins. Samples were sequenced using Illumina HiSeq technology, with 101 paired end chemistry. Comparisson of microbial gene expression between the microbiota of lean and obese twins fed a Low fat, rich in plant polysaccharide diet.
Project description:This study in rats was designed to investigate whether whole rhye (WR) can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA) and gut microbiota composition. For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR). Total bacterial DNA was extracted from fecal and cecal samples (n=5 per group). 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray. A 15 chip study was realized, each corresponding to hybridization with 250ng of labelled 16S rRNA gene amplicons from either mice fecal and cecal samples. Each probe (4441) was synthetized in three replicates.
Project description:We compared gene expression in the small intestine (ileum) of mice that were either (i) germ-free, (ii) colonized with a conventional mouse cecal microbiota, (iii) colonized with a conventional zebrafish gut microbiota, or (iv) colonized with Pseudomonas aeruginosa PAO1. Experiment Overall Design: Adult germ-free NMRI mice were colonized with either (i) a conventional mouse cecal microbiota harvested from adult Swiss-Webster mice (5 biological replicates), (ii) a conventional zebrafish intestinal microbiota harvested from adult C32 zebrafish (3 biological replicates), or (iii) a culture of Pseudomonas aeruginosa PAO1 (5 biological replicates). 14 days after colonization, total RNA was prepared from the ileum of each animal, with total RNA prepared from adult germ-free NMRI mouse ileum serving as negative controls (5 biological replicates). RNA was used as template to generate cRNA for hybridization to Affymetrix 430 v2 Mouse GeneChips.
Project description:The interplay between the intestinal microbiota and host is critical to intestinal ontogeny and homeostasis. MicroRNAs (miRNAs) may be an underlying link. Intestinal miRNAs are microbiota-dependent and when shed in the lumen, affect resident microorganisms. Yet, longitudinal relationships between intestinal tissue miRNAs, luminal miRNAs, and luminal microorganisms have not been elucidated, especially in early life. Here, we investigated the postnatal cecal miRNA and microbiota populations, their relationship, and their impact on intestinal maturation in specific and opportunistic pathogen free mice; we also assessed if they can be modified by an intervention with allochthonous probiotic lactobacilli. We report that cecal and cecal content miRNA and microbiota signatures are temporally regulated, correlated, and modifiable by probiotics with implications for intestinal maturation. These findings help with understanding causal relationships within the gut ecosystem and provide a basis for preventing and managing their alterations in diseases throughout life.
2023-07-08 | GSE149418 | GEO
Project description:The cecal microflora of meat rabbits
Project description:We report RNA-seq data obtained on dissected aorta and four heart valves from rabbits fed with chow diet (n=7), cholesterol-rich diet (n=6) or lard-rich diet (n=7). Rabbits that received cardiac irradiation combined with the cholesterol-rich diet were also included (n=7).
Project description:Chronic diseases arise when pathophysiological processes achieve a steady state by self-reinforcing. Here, we explored the possibility of a self-reinforcement state in a common condition, chronic constipation, where alterations of the gut microbiota have been reported. The functional impact of the microbiota shifts on host physiology remains unclear, however we hypothesized that microbial communities adapted to slow gastrointestinal transit affect host functions in a way that reinforces altered transit, thereby maintaining the advantage for microbial self-selection. To test this, we examined the impact of pharmacologically (loperamide)-induced constipation (PIC) on the structural and functional profile of altered gut microbiota. PIC promoted changes in the gut microbiome, characterized by decreased representation of butyrate-producing Clostridiales, decreased cecal butyrate concentration and altered metabolic profiles of gut microbiota. PIC-associated gut microbiota also impacted colonic gene expression, suggesting this might be a basis for decreased gastrointestinal (GI) motor function. Introduction of PIC-associated cecal microbiota into germ-free (GF) mice significantly decreased GI transit time. Our findings therefore support the concept that chronic diseases like constipation are caused by disease-associated steady states, in this case, caused by reciprocating reinforcement of pathophysiological factors in host-microbe interactions. We used microarrays to detail the global gene expression profile in the proximal colon smooth muscle tissues of germ-free, conventionalized, or specific pathogen free mouse C57Bl/6 female and male specific pathogen free (SPF) mice were bred and housed in the animal care facility at the University of Chicago. Mice of 8–10 weeks of age were treated with 0.1% loperamide in the drinking water for 7 days. Age matched, germ-free (GF) C57Bl/6 mice were gavaged orally with cecal luminal contents harvested from control or loperamide-treated C57Bl/6 donor mice. Recipient mice were sacrificed 4 weeks post-colonization.
Project description:We compared gene expression in the small intestine (ileum) of mice that were either (i) germ-free, (ii) colonized with a conventional mouse cecal microbiota, (iii) colonized with a conventional zebrafish gut microbiota, or (iv) colonized with Pseudomonas aeruginosa PAO1. Keywords: response to microbial colonization