Project description:Phytochromes are red/far red photosensors regulating numerous developmental programs in plants. Among them phytochrome A (phyA) is essential to enable seedling de-etiolation in continuous far-red (FR) light a condition mimicking the environment under a dense canopy. The ecological relevance of this response is demonstrated by the high mortality rate of phyA mutants germinating in deep vegetational shade. phyA signaling involves a direct interaction of the photoreceptor with members of the bHLH transcription factor family, PIF1 and PIF3 (Phytochrome Interacting Factor). Here we investigated the involvement of PIF4 and PIF5 in phyA signaling and found that they redundantly control de-etiolation in FR light. The pif4pif5 double mutant is hypersensitive to low fluence rates of FR light. This phenotype is dependent on FR light perception by phyA but does not rely on alterations of the phyA level. Our microarrays analysis shows that PIF4 and PIF5 are part of an inhibitory mechanism repressing the expression of some light-responsive genes in the dark and are also needed for full expression of several growth-related genes in the light. Unlike PIF1 and PIF3, PIF4 and PIF5 are not degraded in response to FR light indicating that they are light-regulated by a different mechanism. Our genetic analysis suggests that this is achieved through the sequestration of these PIFs by the closely related bHLH transcription factor HFR1 (long Hypocotyl in FR light). Experiment Overall Design: he pif4pif5 double mutant were compared to wild-type plants when kept in the dark or subjected to 1 or 24 hours of 0.5 or 5 µmol/m2/s far-red light respectively.
Project description:Phytochromes are red/far red photosensors regulating numerous developmental programs in plants. Among them phytochrome A (phyA) is essential to enable seedling de-etiolation in continuous far-red (FR) light a condition mimicking the environment under a dense canopy. The ecological relevance of this response is demonstrated by the high mortality rate of phyA mutants germinating in deep vegetational shade. phyA signaling involves a direct interaction of the photoreceptor with members of the bHLH transcription factor family, PIF1 and PIF3 (Phytochrome Interacting Factor). Here we investigated the involvement of PIF4 and PIF5 in phyA signaling and found that they redundantly control de-etiolation in FR light. The pif4pif5 double mutant is hypersensitive to low fluence rates of FR light. This phenotype is dependent on FR light perception by phyA but does not rely on alterations of the phyA level. Our microarrays analysis shows that PIF4 and PIF5 are part of an inhibitory mechanism repressing the expression of some light-responsive genes in the dark and are also needed for full expression of several growth-related genes in the light. Unlike PIF1 and PIF3, PIF4 and PIF5 are not degraded in response to FR light indicating that they are light-regulated by a different mechanism. Our genetic analysis suggests that this is achieved through the sequestration of these PIFs by the closely related bHLH transcription factor HFR1 (long Hypocotyl in FR light).
Project description:Seedling photomorphogenesis is a sophisticated developmental process that is controlled by both the transcriptional and posttranscriptional regulation of gene expression. Here, we identify an Arabidopsis noncoding RNA, designated HIDDEN TREASURE 1 (HID1), as a new factor promoting photomorphogenesisin continuous red light (cR). We show that HID1 acts through PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), a bHLH transcription factor known to be a key repressor of photomorphogenesis.
Project description:This SuperSeries is composed of the following subset Series: GSE35057: Phytochrome Interacting Factor 4 and 5 regulate different set of genes in high and low red/far-red light GSE35059: ChIP-Seq analysis of Phytochrome Interacting Factor 5 DNA binding in low R/FR condition Refer to individual Series
Project description:To identify and characterize genes required for tissue-specific phytochrome responses during hypocotyl development in far-red-light grown bvr lines, we performed gene transcriptional profiling using bvr lines with mesophyll-specific phytochrome inactivation (cab3: :pBVR2). We identified several candidate genes whose expression is significantly altered in lines with mesophyll tissue-specific BVR expression (Cab3::pBVR2), compared to constitutive phytochrome inactivation lines, i.e. 35S-driven BVR lines (35S::pBVR3). No-0 is used as wild-type (WT) Seeds of No-0 WT, 35S::pBVR3 and CAB3::pBVR2 on MS plates were exposed to Red (R) light of 75 M-BM-5mol m-2 s-1 for 5 min and imbibing seeds were cold-stratified at 4 M-BM-0C in darkness for 3 d. Seedlings were grown under continuous far-red illumination for 7 d. Seven-day-old vegetative whole seedlings (300 M-bM-^@M-^S 500 mg) were quickly (<1 min) harvested and immediately frozen in liquid nitrogen inside the FR chamber. Seedlings were grown under continuous far-red illumination for 7 d.
Project description:The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths, but show little or no response to the more attenuated red/far-red wavelengths. Here we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared to other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs.
Project description:PIL5 is a key negative regulator of phytochrome mediated seed germination and PIL5 protein is degraded by red light irradiation through phytochrome. The microarray aimed to find various red light-regulated genes and PIL5-regulated genes in the imbibed seeds. Experiment Overall Design: Col-0 and pil5 seeds were irradiated by far-red light or far-red/red light and then, incubated in the dark for 12 hours. Total three biological replicates were used for the microarray.
Project description:Phytochromes mediate a profound developmental shift when dark-grown seedlings are exposed to light. Here we show that a subset of genes is up regulated in phytochrome B (phyB) mutants even before dark-grown seedlings are exposed to light. Most of these genes bear the RY cis motif, which is a binding site of the transcription factor ABSCISIC ACID INSENSITIVE 3 (ABI3), and the phyB mutation also enhanced ABI3 expression. These changes in transcriptome have physiological consequences as seedlings of the abi3 mutant showed enhanced responses to pulses of far-red light, while ABI3 overexpressers exhibited the opposite pattern. Seedlings of the wild type derived from seeds germinated in full darkness showed enhanced expression of genes bearing the RY cis motif and reduced responses to far-red light. We propose that, via changes in ABI3 expression, light, perceived mainly by phyB in the seed, generates a downstream trans-developmental phase signal that pre-conditions the seedling to its most likely environment. , ,
Project description:The red/far-red light photoreceptor phytochrome mediates photomorphological responses in plants. For light sensing and signaling, phytochromes need to associate with open-chain tetrapyrrole molecules as the chromophore. Biosynthesis of tetrapyrrole chromophores requires members of ferredoxin-dependent bilin reductases (FDBRs). There are two FDBRs in Physcomitrella patens, HY2 and PUBS. Knocking out both generates the phytochrome-deficient mutant. Datasets here provides the transcriptome profiling of Physcomitrella protonema grown in the dark and exposed to one hour red light. Wild type and the hy2 pubs double mutant were used to dissect the regulated genes of moss phytochromes. For details, please see PMID: .
Project description:Phytochromes mediate a profound developmental shift when dark-grown seedlings are exposed to light. Here we show that a subset of genes is up regulated in phytochrome B (phyB) mutants even before dark-grown seedlings are exposed to light. Most of these genes bear the RY cis motif, which is a binding site of the transcription factor ABSCISIC ACID INSENSITIVE 3 (ABI3), and the phyB mutation also enhanced ABI3 expression. These changes in transcriptome have physiological consequences as seedlings of the abi3 mutant showed enhanced responses to pulses of far-red light, while ABI3 overexpressers exhibited the opposite pattern. Seedlings of the wild type derived from seeds germinated in full darkness showed enhanced expression of genes bearing the RY cis motif and reduced responses to far-red light. We propose that, via changes in ABI3 expression, light, perceived mainly by phyB in the seed, generates a downstream trans-developmental phase signal that pre-conditions the seedling to its most likely environment. Keywords: Arabidopsis, photoreceptors, light signal transduction, environmental responses