Project description:Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. We performed whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in Arabidopsis grown under phosphate starvation.
Project description:To explore mechanisms involved in the plant-microbe interactions, we proceeded with genome-wide transcriptome analysis of Arabidopsis roots incubated with E. coli Bl21 for 24 hours. Control plants did not receive E. coli.
Project description:We demonstrate that a combination of BN-PAGE and size exclusion chromatography captures both transient and stable protein interactions in the plant mitochondria and in doing so is able to identify known and novel interactions. We additionally demonstrate that some of these interactions are conditional paving the way for a deeper analysis of the dynamics of their (dis)assembly.
Project description:Magnesium (Mg) is essential for many biological processes in plant cells and its deficiency causes yield reduction in crop systems. Low Mg status reportedly impacts on photosynthesis, sucrose partitioning and biomass allocation. However, earlier responses to Mg deficiency are scarcely described. Generally, symptoms of nutrient deficiency appear in specific ages of leaves. Therefore, we hypothesised that transcriptional responses to Mg deficiency are different depending on the ages of leaves, and performed a global transcriptomic analysis in two types of leaves; source and sink leaves of the model plant species Arabidopsis thaliana to reveal the earlier responses to Mg deficiency. The global transcriptomic study revealed that short-term Mg deficiency triggers the expression of defence response genes in sink leaves. In roots, although short-term Mg deficiency enhanced the Mg2+ uptake from the environmnet, transcriptional levels of genes encoding putative Mg2+ transporters in roots were unchanged, suggesting non-transcriptional regulation of Mg2+ uptake in roots.