Project description:We have performed a transcriptome analysis of genes at three different ripening stages of the pink-white fruits and the ripe stage of the red fruits of Chinese bayberry. This analysis provided a total of 119,701 unigenes, of which 41.43% were annotated in the Nr database. Our results showed that the formation of the pink-white color in Chinese bayberry fruits depended on the anthocyanin metabolic pathway, regulated by MYB1. Downregulated expression of key anthocyanin biosynthetic pathway genes, such as UFGT, F3’H, and ANS at the late stage of fruits development compared with DK3 fruits resulted in the failure to form red fruits. Our findings shed light on the regulatory mechanisms and metabolic processes that control color development in the fruits of Chinese bayberry.
2018-10-09 | GSE120925 | GEO
Project description:Resequencing of Chinese bayberry germplasm resources
| PRJNA936999 | ENA
Project description:The genome of Chinese bayberry cv Zaojia
| PRJNA937074 | ENA
Project description:Comparative transcriptome analyses of fruit development and ripening in two Chinese bayberry cultivars
Project description:Purpose: To gain molecular insights of HBV integration that may contribute to HCC tumorigenesis, we performed whole transcriptome sequencing and whole genome copy number profiling of hepatocellular carcinoma (HCC) samples from 50 Chinese patients. Conclusions: This is the first report on the molecular basis of the MLL4 integration driving MLL4 over-expression. HBV-MLL4 integration occurred frequently in Chinese HCC patients, representing a unique molecular segment for HCC with HBV infection.
Project description:Differences in gene expression were compared for grape berry flesh and skin. The aim of this analysis is to identify key genes that are differentially expressed in the skin or flesh during berry development. Keywords: Tissue specific gene expression analysis
Project description:Purpose: To gain molecular insights of HBV integration that may contribute to HCC tumorigenesis, we performed whole transcriptome sequencing and whole genome copy number profiling of hepatocellular carcinoma (HCC) samples from 50 Chinese patients. Conclusions: This is the first report on the molecular basis of the MLL4 integration driving MLL4 over-expression. HBV-MLL4 integration occurred frequently in Chinese HCC patients, representing a unique molecular segment for HCC with HBV infection. We profiled 50 Chinese Hepatocellular Carcinoma patients and 14 adjacent tissues using Agilent 244K array CGH technology. 50 Tumor samples also did RNASeq profiling.