Project description:We have performed a transcriptome analysis of genes at three different ripening stages of the pink-white fruits and the ripe stage of the red fruits of Chinese bayberry. This analysis provided a total of 119,701 unigenes, of which 41.43% were annotated in the Nr database. Our results showed that the formation of the pink-white color in Chinese bayberry fruits depended on the anthocyanin metabolic pathway, regulated by MYB1. Downregulated expression of key anthocyanin biosynthetic pathway genes, such as UFGT, F3’H, and ANS at the late stage of fruits development compared with DK3 fruits resulted in the failure to form red fruits. Our findings shed light on the regulatory mechanisms and metabolic processes that control color development in the fruits of Chinese bayberry.
2018-10-09 | GSE120925 | GEO
Project description:Resequencing of Chinese bayberry germplasm resources
Project description:Transcriptional profiling of three different genotypes (wheat cv Chinese Spring, and the wheat-rye addition lines 3R and 6R) comparing control and 24h exposure to 200 μM de AlCl3. The goal was to determine the effects of AlCl3 on global gene expression in each genotype and study the differences between them.
Project description:Xanthomonas campestris pathovar campestris (Xcc), the causal agent of black rot disease of cruciferous plants worldwide, is composed of phenotypically heterogeneous groups of strains. The knowledge about the genome diversity and phylogenetic relationships between Xcc strains with different origins are of great interest as they provide insight into the mechanisms of pathogenicity, host preferences and evolution of this pathogen. In our present work, eighteen Xcc strains collected from different geographical area of China mainland were investigated concerning of the genome composition by comparative genomic hybridization (CGH) using microarray slides spotted with PCR-based intragenic DNA fragments of 4273 open reading frames (ORFs) representing the non-redundant genome content of Xcc strain 8004. The common genome backbone of Chinese strains was estimated to contain about 3404 ORFs, which was considered to maintain the basic characteristics of Xcc, i.e. the yellow mucoid colony on nutrient solid medium as well as the pathogenicity to induce black rot disease on host plants. A flexible gene pool of 729 ORFs in Xcc was characterized, of which 402 ORFs were clustered in twenty-seven highly variable genomic regions in Xcc 8004. Of these highly variable genomic regions, five are absolutely absent from Chinese strains, which constitutes the main genomic differences between the Xcc 8004 and Chinese strains. Transcriptome analysis of Xcc 8004 grown in the rich medium NYG and the defined medium XVM2 indicated that the expression of some certain genes in highly variable genomic regions are significantly activated in XVM2, which included the predicted pathogencity and avirulence genes. Candidate genes for cultivar-specificity of Xcc were identified in the variable genomic regions: the avrXccC and avrXccE1 were demonstrated to confer the avirulence on the host plants Mustard cultivar (cv.) Guangtou and Chinese cabbage cv. Zhongbai 83, respectively; and the avrBs1 showed to correlate with the hypersensitive reaction (HR) on the non-host plant pepper ECW10R. This study revealed the common genome backbone of Xcc maintained the basic function in essential metabolisms and basic pathogencity, and the variable genomic determinants contributed to the cultivar-specificity of the pathogen, suggesting that the Xcc genome, with a compact function core carrying essential genes for survival, reproduction, and invasion, is constantly diversifying by acquiring and losing DNA segments, or by DNA degeneration, to improve the genetic novelty for the adaptation during the evolution. Keywords: CGH analysis and transcriptome analysis
Project description:We monitored the transcriptomic response of roots and leaves of Triticum aestivum (cv Chinese Spring) at 2 months following the root inoculation by Azospirillum brasilense sp245 or Burkholderia graminis C4D1M. Plants were grown in pot containing a solid substrate (sand+soil) and 3 plants per pot, conditions in triplicates, in greenhouse conditions, and inoculated at seedling stage with OD 1 washed bacterial culture.
Project description:We monitored by RNAseq the transcriptomic response of roots and leaves of Triticum aestivum cv chinese Spring during a long term interaction with Funneliformis mossae (2 months) with or without a pathogen infection by infiltration of Xanthomonas translucens CFBP 2054. The control condition of roots and leaves wheat without mycorhizal fungi is in E-MTAB-5891 (material produced simultaneously and treated at the same time).