Project description:Expression analysis of gene expression changes in Homo sapiens SGC-7901 cells after knock down of MTA2 (Metastasis-associated protein) or overexpression SNHG5 (snoRNA host gene 5) Investigation of whole genome gene expression level changes in a Homo sapiens gastric carcinoma cells SGC-7901 after knock down MTA2 expression and upregulation of SNHG5 A four chip study using total RNA extracted from SGC-7901 cells transfected with siRNA negative control and SGC-7901 cells knock down of MTA2 with siRNA. Each chip measures the expression level of 45033 genes collected from the authoritative data source including NCBI
Project description:Gene silencing via heterochromatin formation plays a major role in cell differentiation and maintenance of homeostasis. Here, we report the identification and characterization of a novel heterochromatinization factor in vertebrates, Bromo Adjacent Homology Domain-containing protein 1 (BAHD1). BAHD1 interacts with HP1, MBD1, HDAC5 and with several transcription factors. Through electron and immunofluorescence microscopy studies, we show that BAHD1 overexpression directs HP1 to specific nuclear sites and promotes formation of large heterochromatic domains, which lack acetyl histone H3 and are enriched in H3 trimethylated at lysine 27. Furthermore, ectopically expressed BAHD1 colocalizes with the heterochromatic X inactive chromosome. As highlighted by whole genome microarray analysis of BAHD1 knock down cells, BAHD1 represses several proliferation and survival genes and in particular, the insulin-like growth factor II gene (IGF2). BAHD1 specifically binds the CpG-rich P3 promoter of IGF2. This region contains DNA binding sequences for the transcription factor SP1, with which BAHD1 co-immunoprecipitates. Collectively, these findings provide evidence that BAHD1 acts as a silencer by recruiting proteins that coordinate heterochromatin assembly at specific sites in the genome. We used microarrays to identify BAHD1 gene targets. We compared the transcriptome profile of BAHD1 depleted cells with siRNA to that of cells treated with control siRNA.
Project description:Methylated DNA immunoprecipitation-sequencing of HEK293 cells (HEK293-CT) and HEK293 cells stably over-expressing the BAHD1 gene (HEK-BAHD1)
Project description:Comparison of methylome of HEK293-CT cells and HEK293 cells stably over-expressing the BAHD1 gene (HEK-BAHD1) We used BS-seq to identify genomic regions differentially methylated upon overexpression of the chromatin repressor BAHD1 in HEK293 cells.
Project description:we report the partial methylome (CG-rich regions) of HEK293 cells and HEK293 cells over-expressing the BAHD1 gene (HEK-BAHD1) We used MEDIP-seq to identify genomic regions differentially methylated upon overexpression of the chromatin repressor BAHD1 in HEK293 cells.
Project description:Gene silencing via heterochromatin formation plays a major role in cell differentiation and maintenance of homeostasis. Here, we report the identification and characterization of a novel heterochromatinization factor in vertebrates, Bromo Adjacent Homology Domain-containing protein 1 (BAHD1). BAHD1 interacts with HP1, MBD1, HDAC5 and with several transcription factors. Through electron and immunofluorescence microscopy studies, we show that BAHD1 overexpression directs HP1 to specific nuclear sites and promotes formation of large heterochromatic domains, which lack acetyl histone H3 and are enriched in H3 trimethylated at lysine 27. Furthermore, ectopically expressed BAHD1 colocalizes with the heterochromatic X inactive chromosome. As highlighted by whole genome microarray analysis of BAHD1 knock down cells, BAHD1 represses several proliferation and survival genes and in particular, the insulin-like growth factor II gene (IGF2). BAHD1 specifically binds the CpG-rich P3 promoter of IGF2. This region contains DNA binding sequences for the transcription factor SP1, with which BAHD1 co-immunoprecipitates. Collectively, these findings provide evidence that BAHD1 acts as a silencer by recruiting proteins that coordinate heterochromatin assembly at specific sites in the genome. We used microarrays to identify BAHD1 gene targets. We compared the transcriptome profile of BAHD1 depleted cells with siRNA to that of cells treated with control siRNA. Experiment Overall Design: Six samples were analysed, including three biological replicates of control cells and three biological replicates of BAHD1 KD cells.