Project description:East African cichlid fishes have radiated in an explosive fashion. The (epi)genetic basis for the abundant phenotypic diversity of these fishes remains largely unknown. As transposable elements (TEs) contribute extensively to genome evolution, we reasoned that TEs may have fuelled cichlid radiations. While TE-derived genetic and epigenetic variability has been associated with phenotypic traits, TE expression and epigenetic silencing remain unexplored in cichlids. Here, we profiled TE expression in African cichlids, and describe dynamic expression patterns during embryogenesis and according to sex. Most TE silencing factors are conserved and expressed in cichlids. We describe an expansion of two truncated Piwil1 genes in Lake Malawi/Nyasa cichlids, encoding a Piwi domain with catalytic potential. To further dissect epigenetic silencing of TEs, we focused on small RNA-driven epigenetic silencing. We detect a small RNA population in gonads consistent with an active Piwi-interacting RNA (piRNA) pathway targeting TEs. We uncover fluid genomic origins of piRNAs in closely related cichlid species. This, along with signatures of positive selection in piRNA pathway factors, points towards fast co-evolution of TEs and the piRNA pathway. Our study is the first step to understand the contribution of ongoing TE-host arms races to the cichlid radiations in Africa.
Project description:Whole-genome methylomes and total transcriptomes for muscle and liver tissues of Lake Malawi cichlid species characterised in the context of phenotypic diversification.
Project description:We compare fore- and mid-brain transcriptomes of reproductive males in monogamous and non-monogamous species pairs of Peromyscus mice, Microtus voles, parid songbirds, dendrobatid frogs, and Xenotilapia species of cichlid fishes. Our study provides evidence of a universal transcriptomic mechanism underlying the evolution of monogamy in vertebrates.
2018-12-18 | GSE123301 | GEO
Project description:Convergence in cichlid lower pharyngeal jaw transcriptomes
Project description:East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Project description:Somatic embryogenesis closely resembles zygotic embryogenesis and hence, it is considered as a model system to explore dynamic events of embryogenesis, at a molecular level. We sequenced three district developmental time points of somatic embryo development in Arabidopsis thaliana with the aim of exploring transcriptomes at a global scale.
Project description:Identification of differentially expressed genes from RNA-seq data of non-embryogenic and embryogenic ortets. Selected ortets were previously cloned, thereby somatic embryogenesis rates are known for these ortets. Ortets fitting the study criteria were supplied by two agencies, namely L1 and L2. Principal Component Analysis indicated that variance between agencies were higher than the variance between embryogenesis groups within the agency. Therefore, differential analysis was conducted separately for each agency. Differential expression analysis using DESeq2 package suggested the L2 transcriptomes of zero and low embryogenesis groups were more similar compared to the high embryogenesis group. The L1 transcriptomes consisting of zero and low embryogenesis groups similarly showed overlapping clusters. Differential expression analysis was conducted on the L1 samples (low vs. zero embryogenesis) using DESeq2 R package and the identified differentially expressed genes (DEGs) was used for clustering analysis of the L2 samples. The clustering profiles suggested that expression of these DEGs in L2 samples were able to differentiate high embryogenesis from zero-low embryogenesis L2 groups.
Project description:East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Project description:This study examines genomic copy-number variation among African cichlids spanning multiple tribes and radiations. We map CNVs and hotspots throughout the Oreochromis niloticus reference genome, categorize gene ontology enrichment within CNV regions, and compare results with sequence-based cichlid phylogenies.
Project description:The piRNA pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. piRNAs are maternally deposited and required for proper transposon silencing in adult offspring. However, a long-standing question in the field is the precise function of maternally deposited piRNAs and its associated factors during embryogenesis. Here, we probe the spatio-temporal expression patterns of several piRNA pathway components during early stages of development. Amongst those, factors required for transcriptional gene silencing (TGS) showed ubiquitous abundance in somatic and pole cells throughout the first half of embryogenesis. We further analysed the transcriptomes of various embryo stages and correlated these with the presence of selected chromatin marks. We found that a number of transposon families show bursts of transcription during early embryonic stages. Transposons heavily targeted by maternally deposited piRNAs accumulated repressive chromatin marks following their spike in expression. Furthermore, depletion of maternally deposited Piwi protein in early embryos resulted in increased expression of transposons targeted by inherited piRNAs and was accompanied by a strong loss of repressive chromatin marks at coding sequences. Overall, our data suggests a pivotal role for the piRNA pathway in transposon defence during Drosophila embryogenesis in somatic cells.